Solution to the Feynman problem: physical consequences. Accelerated motions by inertia and inertial forces

Authors

  • Valentine Oleinik

Keywords:

the universal gravitation law, Coulomb's law, curvilinear (accelerated) motions by inertia, medium induced by curvilinear inertia (ICI-medium), the change in mass and spin of particle with time, accelerated motions by inertia (AMI) and supersymmetry

Abstract

The fundamental problem formulated by R. Feynman is solved: to establish a mechanism hidden behind the law of gravitation (Coulomb's law). Paradoxically, Coulomb's law has been an important tool for scientific research for several centuries, but the physical mechanism of interaction between particles is still unknown. The validity of the universal gravitation law is confirmed by the experiments of Cavendish for macrobodies and by the observations of the solar system planets motion. Most physicists believe that the Coulomb law describes the interaction not only between stars, planets and macrobodies, but also between individual particles, although there are no experimental data confirming its validity for individual particles. Disclosure of the physical mechanism of interaction between particles is one of the most important problems in physics. Ignorance of the physical nature of the interaction inhibits many studies - on cold nuclear fusion, on the control of gravity, on the creation of engines without the release of reactive mass, and others. It is shown that the introduction of a test point classical particle (considered as a measuring instrument) into the region of action of the Coulomb field produced by the initial point particle significantly distorts the Coulomb field and substantially changes the state of motion of the initial particle. The resultant Coulomb field arising when the Coulomb fields of the initial and probe particles are superimposed differs significantly from the Coulomb field of the original particle. This means that the Coulomb field generated by a point particle does not have the properties of an external field. In deriving the universal gravitation law, it is assumed that the Coulomb field of each particle acts on an adjacent particle as an external field. Consequently, the extrapolation of the universal gravitation law to the interaction between individual particles is inadmissible, its use in description of the interaction between particles is a serious error. The mechanism of interaction between particles, hidden behind the gravitation law, has a formal, abstract character. The Coulomb field attributed to individual particles appears as a solution to the phenomenological equation. Behind it, there is no real, physical field that could be detected by experience. The Coulomb law is a consequence of the gravity model that satisfies the requirement to strictly conform to the fundamental principles proclaimed by the Newtonian scheme of mechanics. The latter, owing to its incompleteness, can give an approximate description of the phenomenon under consideration, but it is not capable of explaining its physical essence. The interaction between the particles is due to the inertia forces acting on the particles as they move along curvilinear trajectories by inertia. These motions represent the most fundamental motions responsible for the self-organization of matter. In general, the inertia forces essentially differ from the Coulomb forces, although there are cases when the inertia force differs from the Coulomb force by small corrections. Accelerated motions by inertia (AMI) can be accompanied by processes of transformation of the particle mass into the medium induced by the curvilinear inertia (ICI medium) and inverse processes that cause a change in mass with time. In an inertial reference frame, the particle mass can vary over a wide range, from the smallest value at points corresponding to the maximum particle velocity, to infinity at the turning points. A particle that performs AMI has its own angular momentum (spin), which, as the mass of the particle, can vary in time within a wide range. This means that in nature the symmetry that connects bosons and fermions can exist, i.e. supersymmetry.

References

Фейнман Р. Характер физических законов. – М.: «Наука», 1987. – С. 33–34.

Дирак П.А.М. Собрание научных трудов. Т. IV. Гравитация и космология. Воспоминания и размышления (лекции, научные статьи 1937-1984 гг.). / Под общ. ред. А.Д. Суханова. – М.: Физматлит, 2005. – C. 197; Dirac P.A.M. Directions in Physics: Lectures Delivered During a Visit to Australia and New Zealand, August/September 1975 / Edited by H. Hora and J.R. Shepanski. – New York: John Wiley & Sons, 1978.

Дирак П.А.М. Принципы квантовой механики. – М.: Наука, 1979.

Dirac P.A.M. The relativistic electron wave equation. – Tallahassee: Florida State University, 1977.

Дирак П.А.М. Лекции по квантовой теории поля. – М.: Мир, 1971.

Олейник В.П., Прокофьев В.П. Вращательная инерция и ее физические следствия. Что такое гравитация? // Физика сознания и жизни, космология и астрофизика. – 2008. – Т. 8. – №2(30). – С. 23–56.

Олейник В.П. Новый подход к проблеме движения: ускоренные движения по инерции. // Физика сознания и жизни, космология и астрофизика. – 2009. – Т. 9. – №3(35). – С. 24–56.

Олейник В.П. О физической природе гравитации. // Физика сознания и жизни, космология и астрофизика. – 2010. – Т. 10. – №3(39). – С. 24–55.

Олейник В.П. Криволинейные движения по инерции и закон Кулона. // Физика сознания и жизни, космология и астрофизика. – 2012. – Т. 12. – №3(47). – С. 34–39.

Олейник В.П. О физической сущности явления криволинейного движения по инерции. Классическая частица как открытая самоорганизующаяся система. // Физика сознания и жизни, космология и астрофизика. – 2013. – Т. 13.– №2(50). – С. 13–46.

Олейник В.П. Закон всемирного тяготения и криволинейное движение по инерции. О физической природе силы, регистрируемой в опыте Кавендиша. // Физика сознания и жизни, космология и астрофизика. – 2013. – Т. 13. – №4(52). – С. 11–32.

Олейник В.П. Проблема Дирака. Обобщение уравнений Максвелла для электромагнитного поля. // Физика сознания и жизни, космология и астрофизика. – 2014. – Т. 14. – №3. – С. 5-17.

Олейник В.П. Проблема Дирака, часть 2. Электромагнитное взаимодействие как прямое следствие законов механики. // Физика сознания и жизни, космология и астрофизика. – 2014. – Т. 14. – №4. – С.5–23.

Олейник В.П. Проблема Дирака, часть 3. Электромагнитное поле и криволинейное движение по инерции. Приложение к модели атома и холодному синтезу ядер. // Физика сознания и жизни, космология и астрофизика. – 2015. – Т. 15. – №1. – С. 32–61.

Олейник В.П. Решение проблемы Дирака: физические следствия. // Физика сознания и жизни, космология и астрофизика. – 2016. – Т. 16. – №1(61) – С. 44–55.

Ландау Л.Д., Лифшиц Е.М. Теория поля. – М.: Наука, 1973.

How to Cite

Oleinik, V. (2017). Solution to the Feynman problem: physical consequences. Accelerated motions by inertia and inertial forces. Physics of Consciousness and Life, Cosmology and Astrophysics, 17(1-2), 22–55. Retrieved from https://physics.socionic.info/index.php/physics/article/view/488

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 > >>