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In the article mathematical methods of social decision-making are developed, when 

the ordering of solutions is given by an arbitrary finite graph. For example: ordered, weighed 
and painted multitudes. The statement of the problem is but has never been considered in 
mathematical sociometry. Developed in our articles mathematical methods for direct and 
duality mathematical problems of the tasks of a single executor under the control of a socium  
under the scheme of an arbitrary finite graph G allow algorithmically solving any real problem 
of a sociometric planning. 

Key words: socium, multi digraphs, color, order. 

1. Elements of the theory graphs  

Graphs (from the word graph, graffiti) are a convenient, clear, geometric representation of bi-
nary relations, which we have already considered in previous articles. The clarity of the graphs con-
tributed to their great popularity among humanitarian, sociological and economic applications. 

First formal definitions. 

Definition 1.1. 

A simple graph A simple graph  is an ordered pair 
 = (V(), E()),  (1.1) 

where V() is a non-empty set, and E() is the binary relation on the set V(), and other subwords of 
the Cartesian product V()  V(). The elements of the set V() will be called the vertices of the 
graph , and the elements of the set E() will be called the edges of the graph .  

Example 1.1. 

Figure 1 exhibit the simple graph . Its vertices are set 
V() = v1,v2,v3 ,v4,v5.  

The elements of V() marked with red circles in figure 1. The edges of  are set  
E() = e1,e2,e3,e4,e5, e6,e7,e8,e9,e10,e11,e12,e13,e14,e15. 

The elements of E() marked with blue lines. The edge 
can connect two vertices, then the corresponding line will be 
straight (e.g. e4), but may connect the vertex itself with itself 
(e11, for example), then the line will be the loop above the cor-
responding vertex. 

If the graph  is interpreted as an economic or political 
relationship between members of a group of 5 members. Then, 
the vertices  will be members of this group, and the edges are 
pairwise. Loops of the graph  can be interpreted as political, or 
economic self-consciousness. 

In the general case, you can have as many arbitrary 
edges between two vertices, so we will have the following defi-
nition. 
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Fig. 1.1. A complete 5-vertex simple 
graph . 
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Definition 1.2. 

A general graph or simply а graph G is an ordered pair 
G = (V(G), E(G)),  (1.2)  

where V(G) is the set of its vertices, and the set E(G) of its edges can be represented as the union of  
E(G) = E1(1)  …  En(n ) 

of the edges Ei(i), i = 1, n of some simple graphs i = (V(G), Ei(i)). 

Example 1.2. 

In Figure 1.2 (in picture 1) , is depicted the general graph G. Its vertices will be the set to  
V(G) = v1,v2,v3 ,v4,v5,  

and the elements marked with red circles, and its edges will be the set  
E(G) = e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16 ,e17,e18,e19, e20. 

The edges are marked with blue lines. We see that there may be a several edges between the 
two vertices (for example, between the vertices v1 and the vertices v2 there will be the three edges - e1, 
e2 and e3). The definition of the graph does not forbid us to have a few loops over an one vertex, but 

our main interpretation of 
the loop, as self-
consciousness leads in such 
cases to clinical and psychi-
atric cases of members of a 
society with a split, trivial, 
etc. consciousness, con-
science. Therefore, we do 
not indicate in the figure 1.2 
the multiplayer over the ver-
tices. The multiedges be-
tween two different a verti-
ces are well interpreted as 
the multiplicity of relations 
between a member or an 
organizations of a society, 
which is often found in real 
situations. 

Further, we introduce a convenient graphic terminology, which we will use throughout our 
book and beyond. 

The pair 
 = (V(), E())  (1.3) 

is a graph. If e = (v1, v2) is its edge, then the vertices v1 and v2 are called a ends of the edge e. In this 
case, the vertices v1 and v2 are by an incindent edge e. A set of two or more edges having the same 
ends are called a parallel to each other. The edge of both ends of the coincident is called a loop. The 
two edges e1 = (v1, v) and e2 = (v, v3) are called the adjacent when they have the common vertex (in 
this case, the vertex v). The vertices v1 and v2 are adjacent to each other if there is an edge e = (v1, v2). 
The number of edges of the incipient vertex vV() is called a degree of the vertex v and is denoted 
by st (v). The vertex v0 whose degree is equal to 0 (st(v0) = 0) is called an isolated. The graph 
 = (V(), E()) will be considered finite if the set of it’s the vertices V() and the edges E() are fi-
nite simultaneously. Denote by n(V) and n(E) the number of vertices and edges of the graph , re-
spectively. The number n(V) will be called order of the graph , and the number n(E) is a volume 
of the graph . 

A simple graph 0 is called complete if each pair of the vertices of 0 is adjacent, for example, 
there is a graph from figure 1. A track L in a graph  (not necessarily simple) is alternating (once ver-
tex, then edge, then vertex, etc.) sequence of the form: 

 

Pict. 1. I .Nevidomyj. The red graph.  
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v1 e1 v2 e1 v3. . . en vn+1,  (1.4) 
the vertices and incident the edges, which begins with the vertex v1 and ends with the vertex vn+1. In 
addition, each of two vertices vi and vi+1, i = n, are finite for the edge ei. The vertex v1 is called an 
input, and the vertex vn+1 is an output of the track L. A track S is called by a path if all its vertices, 
except for the possible input v1 and output vn+1, are pairwise different. If the input and exit of a path S 
coincide, then S is called a loop. A simple graph 0, which does not have any cycle among its vertices 
and edges, is called a tree. A graph  is called connected if for any of its two vertices v1 and v2 there 
is a track L in the graph  such that v1 and v2 are its, respectively, an input and an output of L. 

Example 1.3. 

In figure 1.2, a general graph G is depicted. The ends of the edges e1 are the vertices v1 and v2. 
The vertices v1 and v2 will be incident edges e1. The edges e1, e2 and e3 are pairwise parallel to each 
other. The edge e20 is the loop. The edges e1 and e7 are adjacent. The vertices v1 and v3 are adjacent. 
The degree of vertex v2 is 9, or in our notation st(v2) = 9. Isolated vertices in the graph G are not. 
Graph G is finite. nG(V) = 5, and nG(Е) = 20. In other words, the graph G has order 5, and the volume 
20. 

Figure 1.1 depicts the simple graph . The graph 
 is complete. The track L will, for example, be the se-
quence v1 e2 v2 e12 v2. But L will not be a path. By the 
path of S will be the sequence v1 e10 v5 e7 v3. But S will 
not a cycle. The cycle C will be the sequence v1 e6 v3 e5 
v5 e9 v1. Both graphs of figures 1.1 and 1.2 are linked. 

It is easy for readers to independently come up 
with good examples of the terminology of a life. For ex-
ample, the cycle will be the route of an unfortunate pen-
sioner to various bureaucratic offices for an increase of 5 
hryvnias of his miserable pension. The vertices here will 
be the offices, and it’s the edges the track from one office 
to another office. 

 
The geometric or the graphic representation of 

graphs is very convenient on papers and on the computer 
displays. For computer calculations, for example finding the optimal solutions for the graph control 
models, thegraph information must be represented as numerical arrays. For this purpose, an infor-
mation about graphs is convenient to represent them with the incidence matrix. 

 
Let G be a finite graph with n vertices, which are denoted by 1,2,..., n. A incidence matrix of 

the graph G, which we denote  n
nM G , is the matrix dimension n  n, in which an integer on the 

intersection of the i line and the j column is equal to the number k of edges between the i-th and j-th 
vertices. 

 
 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 

Row. 1° 1 3 1 1 1 
Row. 2° 3 1 2 2 1 
Row. 3° 1 2 1 1 1 
Row. 4° 1 2 1 0 4 
Row. 5° 1 1 1 4 0 

Figure 1.3. 

Example 1.4. 

In Fig. 1.3 depicts the incidence matrix  5
5M G

 of graph G shown in Fig.1.2. 
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In the case of the investigate of asymmetric non-commutative relationships that are often en-
countered in real life (for example, the relationship between a great boss and his a subordinates will 
be, practically, one-sided) convenient to use instead of the ordinary graphs the digraphs in which the 
edges corresponding to the pairwise relationship have the directions.  

 
The formal definition of the digraph is follows. 

Definition 1.3. 

A simple directed graph , or a simple digraph , is called an ordered pair: 
 = (V(), E()), E()  V()  V(),  (1.5) 

where V()  is a set called the set of vertices , and E(), which is a subset of the free union of its 
vertices V() and is called arrows . Moreover, the first component v1 of the arrows e = v1, v2  
E() is called a tail e, and the second component v2 is called a spike of edge e. In the simple digraph 
, for any two of its vertices v1 and v2 there can be no more than one arrow e = v1, v2 or e# = 
v2, v1, or none. 

Example 1.5.  

The simple digraph  is depicted in figure 1.4. Its vertices will set  
V() = v1,v2,v3 ,v4,v5, 

and the elements marked with red circles, and its edges will 
be the set  

E() = e1,e2,e3,e4, e5,e6, 
e7,e8,e9,e10,e11,e12,e13,e14.  

The arrows are marked with blue. 
The digraph  very well depicts the work of a mag-

nificent, busy administration. The vertices of  will be the 
members of the administration, and the arrows indicate the 
transfer of the directive, or instructions one member of the 
administration to another.  

Definition 1.4. 

A digraph G is an ordered pair 
G = (V(G), E(G)),  (1.6) 

where V(G) is the set of its vertices, and the set E(G) of it’s 
the arrows can be represented as the union E(G) = E1(1) … En(n) of the set of arcs Ei(i), 
i = 1, n, of some simple digraphs i = (V(G), Ei(i)), which are identical with G the set of its vertices. 

Example 1.6.  

A digraph G is depicted in figure 1.5. The vertices will be set  
V(G) = v1,v2,v3 ,v4,v5, 

and the set of its the arrows will be set  
E() = e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19,e20. 

The multiarrows between two different the vertices can be interpreted as more than one num-
ber of the instructions, or the directives coming from one member, or organization of society to anoth-
er, which is most often encountered in real state control. 

 
Let G = (V(G), E(G)) be a digraph (1.6). If the arc e=v1,v2 E(G), then the vertex v2 is 

called an external with respect to the vertex v1, and the vertex v1 is an internal with respect to v2. At 
the same time, we call the arc e =v1,v2 such that an outgoing from the vertex v1 and an entering the 
vertex v2. The two arcs v1 and v2 will be called a parallel if they have equivalence the tails and the 
spikes. Denote by nG(V) and nG(E) the number of vertices and arrows of the digraph G, respectively. 
The number nG(V) will be called an order, and the number nG(E) is a volume of the digraph G. 
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Fig. 1.4. 
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Through fl(v1) we denote the set of all arrows of the digraph G that belong to the vertex v1, and 
through st(v1) the set of all arcs G that come out of the vertex v1. fl(v1) is called a flower with a center 
in v1, and st(v1) is a star with a center in v1. The arrow in which the tail and the spik coincide is called 
a hook. The vertex v1 for which is performed fl(v1)  (st(v1)  , fl(v1)  st(v1)  ), respectively, 
are called a root (a leaf, a bean) of the graph G. A distiches L(v1,vn+1) in the digraph G that comes 
out of the vertex v1 and comes to the vertex v2 is called the alternating sequence of the form: 

v1 e1 v2 e2 v3. . . en vn+1  (1.7) 
the vertices and the arrrows, which begins with the 
vertex v1 and ends with the vertex vn+1. In addition, 
all vertices vi with odd indices i are external to the 
arrrows ei, and the vertices vi with odd indices j are 
internal to the arrrows ej. The vertex v1 is called the 
input, and the vertex vn+1 is the output of the dis-
tiches L(v1,vn+1). A dipath P(v1,vn+1) in the di-
graph G is called the distiches (1.7), in which all 
the vertices that belong to it, except that it is possi-
ble to enter v1 and output vn+1, are pairwise differ-
ent. If the input v1 and the output vn+1 of the dipath 
C(v1,vn+1) coincide, then C(v1,vn+1) is called a 
dicycle. The vertex v00 is called an accessible from 
the vertex v0 in the graph G, if there exists a dipath 
P(v0,v00) in G with the input in v0 and output in 
v00. 

Example 1.7. 

In figure 1.5 depicts an G digraph. The tail of the arrow e1 will be the vertex v1, and the spike 
of the arrow e1 will be the vertex v2. The arrow e1 comes from the vertex v1 and enters the vertex v2. 
The arrows e10 and e14 are parallel, and arrows e3 and e1 are not. The arrow e7 is the hook nG(V) = 5, 
and nG(Е) = 16. The star in the center v3 will be the set of edges e11 , e13, e12, e8. The flower in the 
center v3 will be a set of edges e11 , e13, e12, e8. There are no the roots, the leaves and the beans in the 
digraph G. The distiches L(v1,v2) will be the sequence v1 e2 v2 e7 v2. But L(v1,v2) is not be the dis-
tiches. The dipath P(v1,v3) there will be a sequence v1 e1 v2 e9 v4 e12 v3. But P(v1,v3) das not be the 
dicycle. The dicycle is the sequence v1 e1 v2 e9 v4 e5 v1. 

An excellent example of constructing the dicycle in the digraph is the daily route of the post-
man.  

 
Let G = (V(G), E(G)) be the digraph. A coloring of the vertices of the digraph G is the map 

: V(G)   where  is marked with a set of its various colors. A coloring of the arrows of the 
digraph G is the map : E(G)  , and  is marked with the set of different colors that painted the 
arrows. Obviously, the sets  and  are called a colors. If  = RZQ , in other words, if the names 
of colors are marked by the real, the integer, or the 
rational numbers, then the G digraph of which has 
painted the vertices of these numbers is called a 
vertex-weighted digraph. If  = RZQ, then the 
G digraph, which painted the arrows with real, 
integer, or rational numbers, is called an arrows-
weighted digraph. 

Example 1.8.  

1. Look at figure 1. 
2. In figure 1.6.A. depicts the digraph G 

which has painted all the vertices and the arrows. 
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The set  = {red, blue, green}, and the set  = {cumin, blue, green, yellow}. 
3. In the figure 1.6.B is depicted is the digraph in which all the vertices and the arrows are col-

ored with the integers, and hence it is vertex-and arrows-weighted. He has the set  = 2, 18, -3, 11, 
and the set  = 1, 3, -2, 0, 8, -4, 14, 4, 7, 5. 

2. Ordered of socium data collection  

Let  is a person and  is a socium. 

Definitions 2.1.  

A binary relation  
x y  (2.1) 

which symbolizes the statement that the  persons’ prefers according to the indication of the socium  
the variant x to the variant y. A binary relation x y may be called a preference relation of the per-

son  to the indication of the socium . 
A binary relation 

x  y = {( (x y))  ((y x))}  (2.2) 

which symbolizes the statement that the  persons’ according to the indication of the socium  is in-
different between the variant x to the variant y and the variant y to the variant x. A binary relation 
x  y may be called an indifference relation of the person  to the indication of the socium . 

A binary relation 
x ⇶ y = {((x y))  ((x y))}  (2.3) 

which symbolizes the statement that the  person according to the indication of the socium  prefers 
the variant x to variant y or is indifferent between the variant x to the variant y and the variant y to the 
variant x. We may call this binary relation x⇶ y may be called a strongly preference relation of 
the  to the indication of the socium . 

 
First, we ask socium axiomatics. 
The axioms 1-6 see in [9]. 

Axiom 7 areflexivity of preference to the indication of socium. 

(x)  [ (xx)}]  (2.4) 

For any variant (x) and any person  to the indication of a socium  (x x) does not hold.  

Axiom 8 transitivity of preference to the indication of socium. 

(x,y,z)  [{(xy)(yz))   (xz)}]  (2.5) 

For any triple of variants (x,y,z) and any person  to the indication of a socium , if (xy) and 

(yz) hold, then (xz) holds. 

Axiom 9 transitivity of indifference to the indication of socium.  

(x,y,z)  [{(x y)(y z))  (x z)}]  (2.6) 
For any triple of variants (x,y,z) and any person  to the indication of a socium , if (x y) and 
(y z) hold, then (x z) holds. 

Axiom 10 connectedness of strongly preference to the indication of socium. 

(x,y)  [{(x⇶y)(y⇶z)) }]  (2.7) 
For any pair of variants (x,y) and any person  to the indication of a socium , if (x⇶y) or (y⇶z) 
holds.  
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Axiom 11 transitivity of strongly preference to the indication of socium. 

(x,y,z)  [{(x⇶y)(y⇶z))  (x⇶z)}]  (2.8) 
For any triple of variants (x,y,z) and any person  to the indication of a socium , if (x⇶y) and 
(y⇶z) hold, then (x⇶z) holds. 

3. Ordered of socium on linear graph data collection  

Let  is a person,  is a socium, and the dis-
tiches L(x,y, …,w), see figure 3.1. 

Definitions 3.1. 

An ordered of socium  on linear graph the 
distiches L(x,y, …,w) is defined 

1) when  need to make a lot ( 2) of decisions, 
2) as an ordering defined on an issue what is to 

be chosen first, what second, third and so on.  
In other words, all variants are somehow ordered by the society according to is decision rule 

. Rule will be the digraphs L(x,y, …,w), see figure 3.1. 
A binary relation  

x y… P(x,y, …,w)...w  (3.1) 

signifies the  persons’ prefers according to the indication of a socium , according to is decision rule 
by the graphs L(x,y, …,w) the variant x to the variant y furzer the variant y to the variant z and 
third so on to finite distant the vertex w of the distiches L(x,y, …,w), see figure 3.1. 

A binary relation 
x y… L(x,y, …,w)… w = {((xy))  ((yx))…  (.w))  ((w.))}  (3.2)  
signifies the  persons’ prefers or indifference preference relation according to the indication of a so-
cium , according to is decision rule by the graphs L(x,y, …,w) the variant x to the variant y furze 
the variant y to the variant z and third so on to finite distant the vertex w of the distitches L(x,y, 
…,w), see figure 3.1. 

A binary relation 

x⇶y… L(x,y, …,w) … ⇶w = {(xy)  (x y) …(.w)  (. w)}  (3.3) 

signifies the  persons’ indifference preference relation according to the indication of a socium , 
according to is decision rule by the graphs L(x,y, …,w) the variant x to the variant y furze the vari-
ant y to the variant z and third so on to finite distant the vertex w of the distitches L(x,y, …,w), see 
figure 3.1. 

 

4. Case of a general graph  

Let  is a person,  is a socium, and a general graph , see figure 4.1. 

Example 4.1. 

1. In Figure 4.1. depicts a digraph  
 = (V(), E())  (4.1) 

which has painted all the vertices and arcs. Set V() = {red, blue, green} and set E() = {lila, cumin, 
blue, green, yellow}. 

2. Red vertices (x, z) are a social solutions, green vertices (w) – an ecological solutions, blue 
vertices (y) – a financial solutions. 

3. Edges blue –(), green –( ), yellow-(⇶), lila-(⇶), cumin -–( ). 

 
 x 

 

 y  z  w 

Fig. 3.1. The distitches L(x,y, …,w). 



Physics of consciousness and life, cosmology and astrophysics 
 

 

 
44 ¹ 3-4, 2019 

4.The Social  initially proposed from the social service x to ap-
ply strictly (⇶) to the financial service (y), then to remind ( )) from 
the social service x financially y, and so on, by the graph , …, finally, 
the social service (z) solves some of its questions (e13).  

5. Conclusion  

As Example 4.1 shows with our methods from the first three arti-
cles [8]-[9], we can easily simulate any real sociometric problem for one 
person. And since all our models are reduced to computational tasks over 
finite graphs, then we will be able to construct (or have already construct-
ed, see [4], [6]-[7]) good algorithms for their solution. 

Ahead of the mathematical theories for multiple persons and mul-
tiple alternatives. 
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Гритсак-Грёнер В.В., Гритсак-Грёнер Ю. 
Классическая математическая социометрия. Часть III.  

Графические методы упорядочивания социума 

В статье развиваются математические методы принятия социальных решений, когда упорядоченность 
решений задается произвольным конечным графом. Например: упорядоченные, взвешенные и раскра-
шенные множества. Постановка проблемы никогда не рассматривалась в математической социометрии. 
Разработанные в наших статьях математические методы решения прямых и двойственных математиче-
ских задач задач единого исполнителя под управлением социума α по схеме произвольного конечного 
графа G позволяют алгоритмически решать любую реальную задачу социометрического планирования. 
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Fig. 4.1. 

 

Pict. 2. Grosh. The Socium. 


