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In the article mathematical methods of social decision-making are developed, when
the ordering of solutions is given by an arbitrary finite graph. For example: ordered, weighed
and painted multitudes. The statement of the problem is but has never been considered in
mathematical sociometry. Developed in our articles mathematical methods for direct and
duality mathematical problems of the tasks of a single executor under the control of a socium a
under the scheme of an arbitrary finite graph G allow algorithmically solving any real problem
of a sociometric planning.
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1. Elements of the theory graphs

Graphs (from the word graph, graffiti) are a convenient, clear, geometric representation of bi-
nary relations, which we have already considered in previous articles. The clarity of the graphs con-
tributed to their great popularity among humanitarian, sociological and economic applications.

First formal definitions.

Definition 1.1.
A simple graph A simple graph I is an ordered pair
I'=(v{@),E)), (1.1)
where V(I') is a non-empty set, and E(I") is the binary relation on the set V(I'), and other subwords of
the Cartesian product V(I') x V(I'). The elements of the set V(I') will be called the vertices of the
graph I', and the elements of the set E(I') will be called the edges of the graph I".

Example 1.1.

Figure 1 exhibit the simple graph I. Its vertices are set
V(F) = {V1,V2,V3 ,V4,V5}.
The elements of V(I') marked with red circles in figure 1. The edges of T are set

EI) = {e1,e2,e3,e4,e5, 66,67,68,69,610,611,612,613,614,615}.

The elements of E(I') marked with blue lines. The edge
can connect two vertices, then the corresponding line will be
straight (e.g. es), but may connect the vertex itself with itself
(e11, for example), then the line will be the loop above the cor-
responding vertex.

If the graph I is interpreted as an economic or political
relationship between members of a group of 5 members. Then,
the vertices I will be members of this group, and the edges are
pairwise. Loops of the graph I can be interpreted as political, or
economic self-consciousness.

In the general case, you can have as many arbitrary
edges between two vertices, so we will have the following defi-
nition.

Fig. 1.1. A complete S-vertex simple
graphT".
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Definition 1.2.

A general graph or simply a graph G is an ordered pair
G=(V(G),E(G)), (1.2)
where V(G) is the set of its vertices, and the set E(G) of its edges can be represented as the union of
EG)=ET)uv...VE,Ih)
of the edges E«(I";), i=[1, n] of some simple graphs I';=(V(G), E(I")).

Example 1.2.

In Figure 1.2 (in picture 1), is depicted the general graph G. Its vertices will be the set to

V(G) = {VlaVZaV3 3V43V5}a
and the elements marked with red circles, and its edges will be the set
E(G) = {€1,€2,€3,€4,€5,€65€7,€8,€9,€105€11,€125€139€145€15,€16 ,€17,€18,€19, €20}«

The edges are marked with blue lines. We see that there may be a several edges between the
two vertices (for example, between the vertices v; and the vertices v, there will be the three edges - e,
e and e3). The definition of the graph does not forbid us to have a few loops over an one vertex, but
our main interpretation of
the loop, as self-
consciousness leads in such
cases to clinical and psychi-
atric cases of members of a
society with a split, trivial,
etc. consciousness, con-
science. Therefore, we do
not indicate in the figure 1.2
the multiplayer over the ver-
tices. The multiedges be-
tween two different a verti-
ces are well interpreted as
the multiplicity of relations
between a member or an
organizations of a society,
which is often found in real
situations.

Pict. 1. I .Nevidomyj. The red graph.

Further, we introduce a convenient graphic terminology, which we will use throughout our
book and beyond.

The pair

I'=(V(I),E)) (1.3)

is a graph. If e = (v, v2) is its edge, then the vertices vi and v, are called a ends of the edge e. In this
case, the vertices v; and v; are by an incindent edge e. A set of two or more edges having the same
ends are called a parallel to each other. The edge of both ends of the coincident is called a loop. The
two edges e; = (v1, v) and e; = (v, v3) are called the adjacent when they have the common vertex (in
this case, the vertex v). The vertices v; and v, are adjacent to each other if there is an edge e = (v, v2).
The number of edges of the incipient vertex ve V(I') is called a degree of the vertex v and is denoted
by st (v). The vertex vp whose degree is equal to 0 (st(vo) = 0) is called an isolated. The graph
'=(v(T),E)) will be considered finite if the set of it’s the vertices V(I') and the edges E(I') are fi-
nite simultaneously. Denote by nr(V) and nr(E) the number of vertices and edges of the graph T, re-
spectively. The number nr(V) will be called order of the graph I', and the number nr(E) is a volume
of the graph IT".

A simple graph I'y is called complete if each pair of the vertices of I'y is adjacent, for example,
there is a graph from figure 1. A track L in a graph I (not necessarily simple) is alternating (once ver-
tex, then edge, then vertex, etc.) sequence of the form:
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Vier V2e1Vi. .. €en Vi, (1-4)
the vertices and incident the edges, which begins with the vertex vi and ends with the vertex vp+1. In
addition, each of two vertices v; and vi+1, i = [1,n], are finite for the edge e;. The vertex v; is called an
input, and the vertex va+1 is an output of the track L. A track S is called by a path if all its vertices,
except for the possible input vy and output va+1, are pairwise different. If the input and exit of a path S
coincide, then S is called a loop. A simple graph I'y, which does not have any cycle among its vertices
and edges, is called a tree. A graph I' is called connected if for any of its two vertices vi and v, there
is a track L in the graph I'" such that v; and v, are its, respectively, an input and an output of L.

Example 1.3.

In figure 1.2, a general graph G is depicted. The ends of the edges e; are the vertices vy and va.
The vertices vi and v; will be incident edges e;. The edges ei, e; and ez are pairwise parallel to each
other. The edge ey is the loop. The edges e; and ey are adjacent. The vertices v and v are adjacent.
The degree of vertex v, is 9, or in our notation st(vz) = 9. Isolated vertices in the graph G are not.
Graph G is finite. ng(V) = 5, and ng(E) = 20. In other words, the graph G has order 5, and the volume
20.

Figure 1.1 depicts the simple graph I'. The graph
I" is complete. The track L will, for example, be the se-
quence Vi ez vz ez v2. But L will not be a path. By the
path of S will be the sequence vi e1p vs €7 va3. But S will
not a cycle. The cycle C will be the sequence vy es V3 €s
vs €9 vi. Both graphs of figures 1.1 and 1.2 are linked.

It is easy for readers to independently come up
with good examples of the terminology of a life. For ex-
ample, the cycle will be the route of an unfortunate pen-
sioner to various bureaucratic offices for an increase of 5
hryvnias of his miserable pension. The vertices here will
be the offices, and it’s the edges the track from one office
to another office.

Fig. 1.2. The geometric or the graphic representation of

graphs is very convenient on papers and on the computer
displays. For computer calculations, for example finding the optimal solutions for the graph control
models, thegraph information must be represented as numerical arrays. For this purpose, an infor-
mation about graphs is convenient to represent them with the incidence matrix.

Let G be a finite graph with n vertices, which are denoted by 1,2,..., n. A incidence matrix of

the graph G, which we denote M ,’: (G) , 1s the matrix dimension n x n, in which an integer on the

intersection of the i line and the j column is equal to the number k of edges between the i-th and j-th
vertices.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
Row. 1° 1 3 1 1 1
Row. 2° 3 1 2 2 1
Row. 3° 1 2 1 1 1
Row. 4° 1 2 1 0 4
Row. 5° 1 1 1 4 0
Figure 1.3.

Example 1.4.
In Fig. 1.3 depicts the incidence matrix M 55 (G) of graph G shown in Fig.1.2.
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In the case of the investigate of asymmetric non-commutative relationships that are often en-
countered in real life (for example, the relationship between a great boss and his a subordinates will
be, practically, one-sided) convenient to use instead of the ordinary graphs the digraphs in which the
edges corresponding to the pairwise relationship have the directions.

The formal definition of the digraph is follows.

Definition 1.3.

A simple directed graph 3, or a simple digraph 3, is called an ordered pair:
3=(V(3),E(3)), E3)cV(3) LI V(3), (1.5)
where V(J) #J is a set called the set of vertices J, and E(J), which is a subset of the free union of its
vertices V(J) and is called arrows 3. Moreover, the first component v; of the arrows e = <vi,v,> €
E(3) is called a tail e, and the second component v; is called a spike of edge e. In the simple digraph
3, for any two of its vertices vi and v, there can be no more than one arrow e = <Vi,V;> or e =
<V3, V1>, Or none.

Example 1.5.

The simple digraph 3 is depicted in figure 1.4. Its vertices will set
V(3I) = {vi,v2,v3,V4,s},
and the elements marked with red circles, and its edges will
be the set

E(S) = {613629639643 €54C6y
67,68,69,6109611,612,613,614}-
The arrows are marked with blue.

The digraph 3 very well depicts the work of a mag-
nificent, busy administration. The vertices of I will be the
members of the administration, and the arrows indicate the
transfer of the directive, or instructions one member of the
administration to another.

Definition 1.4.
A digraph G is an ordered pair
G=(V(G),E(G)),
where V(G) is the set of its vertices, and the set E(G) of it’s
the arrows can be represented as the union E(G) =E;i(J1)U...UE.(J3n) of the set of arcs Ei(Ji),
i=[1,n], of some simple digraphs J;=(V(G), E«(Ji)), which are identical with G the set of its vertices.

Fig. 1.4.

(1.6)

Example 1.6.

A digraph G is depicted in figure 1.5. The vertices will be set
V(G) = {V1,V2,V3,V4,Vs},
and the set of its the arrows will be set
E(A) = {€1,€2,€3,€4,€5,€6,€7,€8,€0,€10,€11,€12,€13,€14,€15,€16,€17,€18,€19,€20 } .
The multiarrows between two different the vertices can be interpreted as more than one num-
ber of the instructions, or the directives coming from one member, or organization of society to anoth-
er, which is most often encountered in real state control.

Let G=(V(G), E(G)) be a digraph (1.6). If the arc e=<vi,v;>€ E(G), then the vertex v; is
called an external with respect to the vertex vy, and the vertex v is an internal with respect to v,. At
the same time, we call the arc e =<v;,v>> such that an outgoing from the vertex v; and an entering the
vertex v;. The two arcs vy and vz will be called a parallel if they have equivalence the tails and the
spikes. Denote by ng(V) and ng(E) the number of vertices and arrows of the digraph G, respectively.
The number ng(V) will be called an order, and the number ng(E) is a volume of the digraph G.
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Through fl(vi) we denote the set of all arrows of the digraph G that belong to the vertex vy, and
through st(v)) the set of all arcs G that come out of the vertex v;. fl(v)) is called a flower with a center
in vy, and st(v;) is a star with a center in vy. The arrow in which the tail and the spik coincide is called
a hook. The vertex v; for which is performed fl(v,) =@ (st(v1) = &, fl(v1) = st(v1) = &), respectively,
are called a root (a leaf, a bean) of the graph G. A distiches L™(v,va+1) in the digraph G that comes
out of the vertex vi and comes to the vertex v; is called the alternating sequence of the form:

Vieir V2€2V3. .. €n Vn+t (1.7)
the vertices and the arrrows, which begins with the
vertex v and ends with the vertex vy+1. In addition,
all vertices v; with odd indices i are external to the
arrrows e;j, and the vertices v; with odd indices j are
internal to the arrrows ej. The vertex vy is called the
input, and the vertex vp+1 is the output of the dis-
tiches L7(V1,Vn+1). A dipath P~ (Vi,Va+1) in the di-
graph G is called the distiches (1.7), in which all
the vertices that belong to it, except that it is possi-
ble to enter vy and output vp+1, are pairwise differ-
ent. If the input v; and the output vp+ of the dipath
C?(V1,Vn+1) coincide, then C7(vi,Vn+1) is called a
dicycle. The vertex Vo is called an accessible from
the vertex vy in the graph G, if there exists a dipath
Fig. 1.5. P(Vo,Voo) in G with the input in Vo and output in
Voo.

Example 1.7.

In figure 1.5 depicts an G digraph. The tail of the arrow e; will be the vertex vy, and the spike
of the arrow e; will be the vertex v,. The arrow e; comes from the vertex v; and enters the vertex v.
The arrows e and ei4 are parallel, and arrows e; and e; are not. The arrow ey is the hook ng(V) =5,
and ng(E) = 16. The star in the center v3 will be the set of edges {ei1, €13, ez, es}. The flower in the
center v will be a set of edges {e11, €13, €12, es}. There are no the roots, the leaves and the beans in the
digraph G. The distiches L™(v1,v2) will be the sequence vi e; v2 €7 v2. But L™(vy,v2) is not be the dis-
tiches. The dipath P~(v1,v3) there will be a sequence v €1 v2 €9 V4 €12 v3. But P~(vy,v3) das not be the
dicycle. The dicycle is the sequence vi €1 V2 €9 V4 €5 V1.

An excellent example of constructing the dicycle in the digraph is the daily route of the post-
man.

Let G=(V(G), E(G)) be the digraph. A coloring of the vertices of the digraph G is the map
¢: V(G) —> O where O is marked with a set of its various colors. A coloring of the arrows of the
digraph G is the map y: E(G) — ZE, and E is marked with the set of different colors that painted the
arrows. Obviously, the sets ® and = are called a colors. If ® = RvZvQ , in other words, if the names

of colors are marked by the real, the integer, or the
rational numbers, then the G digraph of which has
painted the vertices of these numbers is called a
vertex-weighted digraph. If = = RvZvQ, then the
G digraph, which painted the arrows with real,
integer, or rational numbers, is called an arrows-
weighted digraph.

Example 1.8.

1. Look at figure 1.
2. In figure 1.6.A. depicts the digraph G
which has painted all the vertices and the arrows.
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The set ® = {red, blue, green}, and the set E = {cumin, blue, green, yellow}.

3. In the figure 1.6.B is depicted is the digraph in which all the vertices and the arrows are col-
ored with the integers, and hence it is vertex-and arrows-weighted. He has the set ® = {2, 18, -3, 11},
and theset 2=1{1,3,-2,0,8,-4,14,4,7, 5}.

2. Ordered of socium data collection

Let a is a person and R is a socium.

Definitions 2.1.
A binary relation
XR>o ¥ (2.1)
which symbolizes the statement that the a persons’ prefers according to the indication of the socium R
the variant x to the variant y. A binary relation xg>, y may be called a preference relation of the per-

son o to the indication of the socium R.
A binary relation

XgVo ¥ = {(= (Xgt>=a ¥)) A (5(Yn>-a X))} (2.2)

which symbolizes the statement that the o persons’ according to the indication of the socium R is in-
different between the variant x to the variant y and the variant y to the variant x. A binary relation
x%Vo Y may be called an indifference relation of the person a to the indication of the socium .

A binary relation

X 53a Y = {((xx>=a Y)) V (K5Vay))} (2.3)
which symbolizes the statement that the o person according to the indication of the socium R prefers
the variant x to variant y or is indifferent between the variant x to the variant y and the variant y to the
variant Xx. We may call this binary relation xg3, y may be called a strongly preference relation of
the a to the indication of the socium R.

First, we ask socium axiomatics.
The axioms 1-6 see in [9].
Axiom 7 areflexivity of preference to the indication of socium.
VX)Va = [- Xx=ax)}] 2.4

For any variant (x) and any person a to the indication of a socium R (X< X) does not hold.

Axiom 8 transitivity of preference to the indication of socium.
V(Xy,2)Va = [{Xg=oY)A(YR=aZ)) = — (Xn=aZ)}] 2.5
For any triple of variants (x,y,z) and any person a to the indication of a socium R, if (Xg>ay) and

(yw>oz) hold, then (xg>qz) holds.

Axiom 9 transitivity of indifference to the indication of socium.

V(x,y,2)Va = [{(xzVay)A(YrVaz)) = (x2Vaz)}] (2.6)
For any triple of variants (x,y,z) and any person o to the indication of a socium ‘R, if (xgVey) and
(ynVoz) hold, then (x#V4z) holds.

Axiom 10 connectedness of strongly preference to the indication of socium.

Vxy)Va = [{(xxZay)V(y3a2)) }] 2.7
For any pair of variants (x,y) and any person a to the indication of a socium R, if (x3qy) or (Y3az)
holds.
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Axiom 11 transitivity of strongly preference to the indication of socium.

Vxy2)Va = [{(xZay)ANynSaz)) = n3az)}] (2.8)
For any triple of variants (x,y,z) and any person a to the indication of a socium R, if (xx=3ay) and
(yn3oz) hold, then (xy=¢z) holds.

3. Ordered of socium on linear graph data collection

Let a is a person, R is a socium, and the dis-
tiches L(X,y, ...,W), see figure 3.1.

Definitions 3.1. @

An ordered of socium ‘R on linear graph the

distiches L(X,y, ...,W) is defined: @ — - —>
1) when a need to make a lot (> 2) of decisions, Fig. 3.1. The distitches L>(X,y, ...,W).
2) as an ordering defined on an issue: what is to

be chosen first, what second, third and so on.
In other words, all variants are somehow ordered by the society according to is decision rule
R. Rule will be the digraphs L7(X,y, ...,W), see figure 3.1.
A binary relation
Xt>a Y>aess P7OGY,s oo esW)eeit-gW (3.1)

signifies the o persons’ prefers according to the indication of a socium R, according to is decision rule
by the graphs L(X,y, ...,w) the variant x to the variant y; furzer the variant y to the variant z; and
third so on to finite distant the vertex w of the distiches L(X,y, ...,w), see figure 3.1.
A binary relation

XgVgy... LY, <o csW)eo.tVaW = {(=(X5>aY)) A (m(YR>0X))... =1 (f=aW)) A ((Wg>=o.))} 3.2)
signifies the a persons’ prefers or indifference preference relation according to the indication of a so-
cium R, according to is decision rule by the graphs L(X,y, ...,Ww) the variant x to the variant y; furze
the variant y to the variant z; and third so on to finite distant the vertex w of the distitches L>(X,y,

...sW), see figure 3.1.
A binary relation

XG0y L_’(X,y, ceesW) ol 830w = {(Xstmo) V (XxtVay) --.(w=aW) V (2VaW)}  (3.3)
signifies the a persons’ indifference preference relation according to the indication of a socium R,
according to is decision rule by the graphs L(X,y, ...,w) the variant x to the variant y; furze the vari-

ant y to the variant z; and third so on to finite distant the vertex w of the distitches L>(X,y, ...,W), see
figure 3.1.

4. Case of a general graph

Let o is a person, R is a socium, and a general graph T, see figure 4.1.

Example 4.1.

1. In Figure 4.1. depicts a digraph
I'=(V(I), ET)) (4.1)
which has painted all the vertices and arcs. Set V(') = {red, blue, green} and set E(I') = {lila, cumin,
blue, green, yellow}.
2. Red vertices (X, z) are a social solutions, green vertices (W) — an ecological solutions, blue
vertices (y) — a financial solutions.

3. Edges blue —(w>o), green —(wVo), vellow-w3s), lila-(w3a), cumin —(wVg).
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4.The Social R initially proposed from the social service X to ap-
ply strictly (w3q) to the financial service (y), then to remind (wVy)) from
the social service x financially y, and so on, by the graph T, ..., finally,
the social service (z) solves some of its questions (ei3).

5. Conclusion

As Example 4.1 shows with our methods from the first three arti-
cles [8]-[9], we can easily simulate any real sociometric problem for one
person. And since all our models are reduced to computational tasks over
finite graphs, then we will be able to construct (or have already construct-
ed, see [4], [6]-[7]) good algorithms for their solution. Fig. 4.1.

Ahead of the mathematical theories for multiple persons and mul-
tiple alternatives.
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Cmamus nocmynuaa 6 peoaxyuio 05.12.2017 2.

I'pumcax-I'pénep B.B., I pumcax-I pénep FO.
Kunaccnueckass MmaTtemaTuueckasi counomerpus. Yacrs I11.
I'padpuyeckune MeToabl YHOPSA0YMBAHUSA COIIMYMA

B crarbe pa3BHBalOTCS MaTEMAaTUYECKHE METOJbl IPUHSATHA COLUANIBHBIX PELIEHHUH, KOrja yHopsIOYeHHOCTb
peleHnit 3a1aeTcsi MPOM3BOJIBHBIM KOHEYHBIM rpadom. Hampumep: ynopsiioyeHHbIE, B3BEIIEHHBIE M pacKpa-
LIeHHble MHOXKecTBa. [locTaHOBKa NpOOJIEMbI HUKOTIa HE paccMaTpuBallach B MaTEMaTHYE€CKOW COLIMOMETPHH.
Pa3paboTaHHble B HAIIMX CTAaThIX MAaTEeMaTHYECKHE METOIbI PELICHHS NMPAMBIX M JABOHCTBEHHBIX MaTeMaTHde-
CKHX 3a/1a4 3a/1a4 €JUHOTO HMCIIOJIHUTENS IO YIPAaBICHHEM COLUYMA 0. IO CXEM€ ITPOU3BOJBHOIO KOHEYHOIO
rpada G 10o3BOJSIOT AITOPUTMHYECKH PEIIATh JTI00YI0 pealbHyI0 33aady COIIMOMETPHUECKOTO INIAHUPOBAHNSI.

Kniouesuie cnosa: conmym, MynbTH JUrpadbl, IBET, ITOPSIOK.
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