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The idea of a ―Combinatorial Chaotics‖ or Chaotic was as is well known, originally 

suggested by V. V. Gritsak-Groener in his pioneering article [1]. In this article we construct the 

model combinatorial chaotic of a collection of bioinformatics objects:  

a) a flows in a chaos; 

b) a chaos in a permutation; 

c) a chaos in combinatorial configurations. 

We also construct the computational algorithms of the problems a)-c).  
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1. Flows in Chaos 

Consider a digraph  

Г = (V(Г), E(Г), v
+
, v

 -
, ), 

where E(Г) is the arc-set, V(Г) is the vertex-set containing a source v
+

V(Г) and sink v
 -

V(Г), and  

: E(Г)  R
+ 

is the function defining the capacity of arcs. Let  

P = {P V(Г) : v
+

P, v
 -

 P}. 

For P P, we refer to 

R(P)= {e E(Г) : 
+
e  P, 

-
e

 
 P} 

as the cut corresponding to P and define its capacity by 

(P) = 
1

( )
r

i

i

e , ei R(P), r = R(P) . 

Definition 1. A flow in Г is a function  

 : E(Г)  R
+  

that satisfies capacity condition:  

0  (e)  (e) 

for each e E(Г) and the conservation condition: 

(
+
v) = (

-
v) 

at each vertex v V(Г) distinct from e
+
 and e

-
, where  

(
+
v) = ( )

e v

e  and (
-
v) = ( )

e v

e . 

The max- flow problem is to maximize the value of flow . 

Theorem 1. The maximum value of a flow  in the digraph Г is equal to the minimum capaci-

ty of a cut. 

Corollary 1.1. Efficient algorithms of complexity such as O(|V(Г)|
3
) are known for finding a 

maximum flow. 

The proof and the algorithm are found in [1].  

The graph-theoretical notion of network flows has been generalized to combinatorial configu-

rations and in this note we make a natural extension of it to a pair of clutters on the ground set A. We 
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shall give a short summary of some of main results known about network flows on combinatorial con-

figurations and chaotics. 

The basic definitions of the terms pertaining to flows in chaos are as follows.  

Definition 2. Let  = (A,C) be finite chaotic with the groundset A = a0,a1, . . .,an  and the cy-

cles C = с1,с2, . . .,сd  2
A
. a0 A and is called the flows with input in a0 of . Given C(a0)  C, C(a0) 

= i C : i a0 , i= 1,r . And given V = vi Q
+
 : i= 1,n . vi is called weight of the element ai A . 

Further, given the matrix M = ij n r, where ij = 1 if ai j. Since ai j, we have ij = 0. The matrix M 

is called flow-matrix across the cycles C(a0). Finally, define the flows F  of  by 

(p1,p2, . . .,pr), pi Q
+
, 

Where 

1

r

ij j i

j

p v , i = 1,n . 

V  = 
1

r

j

j

p іs called value of flows F .  

Examples 1. A blood flow, a limphe flow, a toxic flux, a peniciline propagation and other are 

biological&medicine examples for flow in chaos. 

Definition 3. Let  = (A,C) be chaotic in definition 1.  

We assume that 

( 0

1x , ..., 0

rx ) 

is the solution of the problem 

P( ) = 
1

r

j

j

x  max 

1

r

ij j i

j

x v , i = 1,n . 

The vector ( 0

1x , ..., 0

rx ) is a maximum -flow in the presence of weights V = vi Q
+
 : i= 1,n  and 

flows with input in a0 A. If сk is cycle of  which contains a0 then by the capacity f(сk) of сk (with 

respect to a0) we mean 

f(сk) =

i k

i

i a c

v . 

We say that the chaotic  = (A,C) is called a regular if for each a0 A which is not a loop of  

and for any set of capacities V= v1, ...,vn  the value of the maximum -flow equals the minimum ca-

pacity f
min

(сk) of a0, i. e. 

P
max

( ) = f
min

(сk). 

Examples 2. (See fig.1). The picture is the illustration of the chaotic-flow.  

Next, we are now in a position to state the problem of chaotic theory. 

Problem JULIA. Let  = (A,C) is a finite chaotic. Where  is a regular chaotic? 

Theorem 2. Let  = (A, C) is a finite chaotic. a0 A is not a loop and for any set of capacities 

V= v1, ...,vn  ( vi 0) the value of the maximum -flow equals the minimum capacity f
min

(сk) of a0, 

i. e. 

P
max

( )  f
min

(сk).  

The proof and the algorithm are found in [2]. Detailed biologic interpretation sees in [3]. 
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2. Recognition Algorithm of Strength Chaotic Height 

At a basic level, one would expect that bi-

ological chaos would address the question of how 

one constructs the chaotic height for fundamental 

objects in biology. As usual, biological fundamen-

tal objects (the amino acid sequences of proteins, 

the neuron sequences) are strength of bio-objects 

(b-objects). Any such list of objects gives the ob-

jects of a linear order. These mean that if  and  

are b-objects, then we can say that  <  if  pre-

cedes  on the list. A structure different from line-

ar order early gives a chaotic combinatorial con-

figuration on b-objects. If the list has n b-objects, 

the linear order must map these objects to the set  

1, 2, 3, …, n. 

Furthermore, one might expect that the linear order 

have chaotic height of strength (chs) null.  

Definition 4. A permutation of n distinct 

b-objects of length i is an ordered arrangement of 

any i of the b-objects and is denoted i

n . By P(n) denote the permutation of n distinct b-objects of 

length n. A permutation P(n) is frequently called a permutation of n. 

Examples 3. For example, the permutation of S4 = {,,χ,} of length 2 are , χ, , , 

χ, , χ, χ, χ, , , and χ. 

Theorem 3. The number of permutations of n b-objects of length i is 

μ(P(n)) = n × (n – 1) × . . . × (n – i + 1). 

The proof is given in exercises. 

Definition 5. Let P(n) is a permutation n. A strength chaotic height (sch is denoted λ(P(n)) of 

P(n) is equal to λ(P´(n – ))×n + (i0 – 1) if n is odd number and sch is equal to λ(P´(n – ))×n + (n  i0) 

if n is even number, where P´(n  1) is a permutation n   is equal to P(n) without n and i0 is position 

n in P(n). λ(P(1)) = 0. 

A relative strength chaotic height (rsch is denoted χ(P(n))) of P(n) is equal to λ(P(n) : n!, 

where n! = 1 × 2 × . . . × n.  
Examples 4. For example, we computation λ((2, 3, 1, 5, 4)) and χ((2, 3, 1, 5, 4)). We have 

λ((1)) = 0. Therefore, we have  
((1)) = 0   ((2, 1)) = 0 × 2 + (2  1) = 1; 
((2, 1)) = 1   ((2, 3, 1)) = 1 × 3 + (3  2) = 4; 
((2, 3, 1)) = 4  ((2, 3, 1, 4)) = 4 × 4 + (4  4) = 16; 
((2, 3, 1, 4)) = 16  ((2, 3, 1, 5, 4)) = 16 × 5 + (4  1) = 83. 

Finally, we obtain χ((2, 3, 1, 5, 4)) = 83/120 ≈ 0.69167. 

Theorem 4. If P(n) is a permutation n, then  

0 ≤ λ(P(n)) < n!. 

The proof is trivial. 

Corollary. If P(n) is a permutation n, then 0 ≤ χ(P(n)) < 1. 

The sch and rsch algorithm is listed in Algorithm 1. If necessary operate with a large num-

bers, then see an algorithm in [5, 6]. 

/********************* Algorithm 1. *********************************** 

challenge: 

#include "heiperm.cpp" 

void main() 

{ 

  int perm[6]={0,2,3,1,5,4}; 

  int lambda=hperm(5,perm); 

 

Fig. 1. W. Kandynsky, “Flow”. 
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  double hi=rhperm(5,perm); 

}; 

********************************************************/ 

int hperm(int n, int *perm) 

// Commentary 1 

{ 

  if (n==1) return 0; 

  else 

  { 

    int* perm1; // Commentary 2 

    int j; 

    int i0; // Commentary 3 

    perm1=new int[n]; // Commentary 4 

    j=1; 

    for (int i=1; i<=n; i++) 

    { 

      if (perm[i]!=n) 

      { 

        perm1[j]=perm[i]; j++; 

      } 

      else i0=i; 

    }; 

    int lpn1=hperm(n-1,perm1); // Commentary 5 

    delete [] perm1; // Commentary 6 

    if ((n%2)==1) // Commentary 7 

    return lpn1*n+(i0-1); 

    else return lpn1*n+(n-i0); 

  }; 

}; 

 

double rhperm(int n, int *perm)  

// Commentary 8 

{ 

  long f=1; 

  for (long i=1; i<=n; i++) f=f*i; // Commentary 9 

  double hp=hperm(n,perm); 

  return hp/f; 

}; 

3. Combinatorial Configurations. Prolog of Dynamics Methods 

A man growth is the cell’s (combinatorial configurations!) phase transitions: 

gamete  embryo  snake  fish  animal  children  man(woman)  gamete. 

Definition 6. Further, let  

K = (A, B), B  2
A
 

be a combinatorial configurations. Suppose K = (V, E) 

is a K-hypergraph (or simple a hy-pergraph) with 

hypervertex set V = B, hyperedge set E  B B and 

ground set A. We write hyperedges as e = (b1,b2), when 

b1,b2 B and b1  b2  . If b1 and b2 are the end 

vertices, we call them adjacent and write b1  b2. The 

elements of the ground set A are called microelements 

K. All K-hypergraphs K (and the combinatorial 

configurations K) are assumed without further comment 

to be connected and finite, let K = (A, B) is a chaotic. 

Examples 5. (See Figure 2) The J -hypergraph 

J is uniquely determined by Figure 2. 

Let K = (A, B) is a chaotic. K = (V, E) is a K-hypergraph. Given T V, set  T

V  = V v T : 
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Fig. 2. J -hypergraph J . 
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t T, t  v  is called the crown of T and  T

V = e=(v1,v2) E : v1 T, v2 T  is called the igl of T. 

Define the crown-saturation of K by 
T

V = min
T V

T

V ): T) ,  

and let the igl-saturation of K by 
T

V = min
T V

 T

V ): T) .  

A hypergraph K is called -igllable if S T

V =  and a hypergraph K is called -crownable if S T

V = , 

where , (0,1). An automorphism of K is a bijection f: V  V that induces a bijection of  

f: E  E. The set of autorphisms of K forms a group denoted Aut( K). We say that a subgroup  

G  Aut( K) is transitive if for v1,v2 V, there is some g G such that g(v1) = v2. We call the 

hypergraph K itself transitive if Aut( K) is. 

Theorem 5. 
ki

Z be a cyclic group of , n,m Z . If G be a finitely generated commutative group 

and J a finite generating set for G, then  

G  
1 2

... ...
m

mn

i i iZ Z Z Z Z ,  

n  m  (J).  

The proof of theorem 5 and detailed information are in [7]. 

Definition 7. Let G be a finitely generated commutative group and J = j1, …, jn,c1, …, cm  be 

a finite generating set for G, see (0.2.34). The Groener hypergraph (G-hypergraph) 
G

 = (G, J) of is a 

K-hypergraph with microelements set A = G and hypervertex set V = v = gj : g G, j J , and 

hyperedge set E contains a pair (v1,v2), v1,v2 V, v1  v2  . 

Examples 6. A cell bisection process is the phase transition of J = c1, c2 . 

A «gamete  embryo» process is the phase transition of J =  j1, c1, c2 . 

A «animal  children» process is the phase transition of J =  j1, c1, …, cm . 

A «children  man(woman)» process is the phase transition of J = c1, …, cm . 

Furthermore, a locally compact group G has a unique invariant -finite Radon measure  * ; 

it is unique up to multiplicative constant 7 . For g G, the measure S   g(S)  is invariant, 

whence there is a positive number d
g
 such that  g(S)  = d

g 
 S  for all measurable S. The map  

g  d
g
 is inducers homomorphism from G to the multiplicative group of the positive reals and is 

called the modular function of G. If d
g
 = 1 for g G, then G is called unimodular. We call  

a hypergraph K unimodular if Aut( K) is.  

Theorem 6. We give the group Aut( K) of a hypergraph K the topology of Microscope 

method. Suppose there is a transitive unimodular closed subgroup G* of Aut( K), then Aut(G*) is also 

unimodular. 

The proof of theorem 6 and detailed of Microscope method are in 5 , 7  and 8 . 

Therefore let K = (A,B) is a chaotic and K = (V,E) is a K-hypergraph. The stabilizer St(v) = 

g Aut( K), v V : g(v) = v , of v  V is compact and so has Grit measure 7 . Note that if g(v*) = 

w, then St(w) = (g(St(v*))) g , whence St(w)  = (St(v*)) g
 
= (d

g
)

  
(St(v*)) . 

Theorem 7. A K-hypergraph K = (V,E), K = (A,B) is unimodular  for v1,v2 V = B in the 

same orbit, St(v1)  = St(v2) . 

Corollary 7.1. If K = (V,E), is transitive, then K is unimodular  St(v1)  = St(v2)  for all 

neighbors v1 and v2, v1,v2 V. 
The proof is in [7]. 

Unimodularity of Aut( K), K = (V,E), K = (A,B) is finite combinatorial property. 

Theorem 8. Let K = (V,E), K = (A,B) is a K-hypergraph. Let  *  denotes cardinality for 

subsets V and Hrit measure for subsets Aut( K). Then for any vertices v1,v2 V, 

(St(v1))v2  (St(v2))v1  = St(v1)  St(v2) ;  
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thus, K is unimodular  for v1,v2 V = B in the same orbit, 

(St(v1))v2  = (St(v2))v1 .  

Theorem 9. Let K = (V,E), K = (A,B) is a K-hypergraph. If K is transitive, then K is 

unimodular  (0.2.36) holds for all neighbors for any vertices v1,v2 V. 

Finally, let G be the finitely generated commutative group and L(G) be the space of 

measurable real-valued functions on G that are essentially bounded with respect to the measure. A 

linear functional on L(G) is called a babaj if it maps the constant function to the number 1 and non-

negative-functions to non-negative numbers. If L(G) and g G, we write Lg(  (x)) =  (g(x)). We 

call a babaj invariant if (Lg( )) = ( ) for g G. We say that G igllable if there is an invariant 

babaj on L(G).  

Let K = (V,E), K = (A,B) is a K-hypergraph. Given a set T  V, let  T  =
v T

St(v1) . Say 

that a transitive graph K is -igllable if for  >0,  (0,1), there is T  V, such that  T

V  < D .  

Let l (V) an infinite space of measurable real-valued functions on the vertex V of the K-

hypergraph K = (V,E), K = (A,B). A babaj on l (V) is called invariant if l (V) has the babaj as 

Lg(  ) with defines as function taking v  (g(v)) for g Aut( K). 

Theorem 10. Let K = (V,E), K = (A,B) is a transitive K-hypergraph. Then K is -igllable  

Aut( K) is -igllable and unimodular. 

If K is -crownable, then this concept is the same as -igllable. 

The proof of theorems 8–10 and computational algorithms are in [4] and [7]. 
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Гритсак-Грѐнер В.В., Гритсак-Грѐнер Ю. 

Хаотики и их применения в биовычислениях  
Идея «комбинаторного хаотика» была первоначально предложена В. В. Грицаком-Грёнером в его нова-

торской статье [1]. В настоящей статье мы строим модель комбинаторного хаотика из набора объектов 

биоинформатики:  

a) потоки в хаосе;  

b) хаос в перестановках;  

c) хаос в комбинаторных конфигурациях.  

Мы также строим вычислительные алгоритмы проблем a)-c).  

Ключевые слова: хаос, синергетика, биоинформатика, алгоритм хаоса. 


