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The idea of a “Combinatorial Chaotics” or Chaotic was as is well known, originally
suggested by V. V. Gritsak-Groener in his pioneering article [1]. In this article we construct the
model combinatorial chaotic of a collection of bioinformatics objects:

a) aflows ina chaos;

b) achaos in a permutation;

¢) achaos in combinatorial configurations.
We also construct the computational algorithms of the problems a)-c).
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1. Flows in Chaos
Consider a digraph
I'=(V(D),EM), V', V', 9),
where E(T) is the arc-set, V(I') is the vertex-set containing a source v'eV(I') and sink v e V(I'), and
¢: E(') — R"is the function defining the capacity of arcs. Let
?={PcV():V'eP,ve P}
For Pe®, we refer to

R(P)={ecE):d'e € P, Je ¢ P}
as the cut corresponding to P and define its capacity by
o(P) = z P),ecRP), r=IRP)I.
i=1
Definition 1. A flow in T is a function

®:E(I)— R"
that satisfies capacity condition:

0<0() <o(e)
for each ecE(T") and the conservation condition:
O(5'v) =0(8V)
at each vertex ve V(I') distinct from e* and e”, where
06'v)= < @) ando@Ev)= “ D).
Heehtv Heeb v
The max- flow problem is to maximize the value of flow ©.

Theorem 1. The maximum value of a flow ® in the digraph I" is equal to the minimum capaci-
ty of a cut.

Corollary 1.1. Efficient algorithms of complexity such as O(|V(I')[*) are known for finding a
maximum flow.

The proof and the algorithm are found in [1].

The graph-theoretical notion of network flows has been generalized to combinatorial configu-
rations and in this note we make a natural extension of it to a pair of clutters on the ground set A. We
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shall give a short summary of some of main results known about network flows on combinatorial con-
figurations and chaotics.
The basic definitions of the terms pertaining to flows in chaos are as follows.

Definition 2. Let 3 =(A,C) be finite chaotic with the groundset A = {ap,as, . . .,a,} and the cy-
cles C = {cy,co, . . ..catc 2 apeA and is called the flows with input in aoof 3. Given C(ag) = C, C(ap)
= {a;eC : Vodao}, i=[1,r]. And given V = {v;eQ" : i=[1,n]}. v; is called weight of the element a;eA .
Further, given the matrix M = [tjj],.., where tj; = 1 if ajea;. Since aje o, we have tj; = 0. The matrix M

is called flow-matrix across the cycles C(ap). Finally, define the flows #5 of 3 by

(P1.P2, - - o), PieQ™,
>

j=

Where

R E i

fr/j—z

= “ p; is called value of flows .
j=1
Examples 1. A blood flow, a limphe flow, a toxic flux, a peniciline propagation and other are
biological&medicine examples for flow in chaos.

Definition 3. Let 5 =(A,C) be chaotic in definition 1.
We assume that

(X, .., x0)
is the solution of the problem

P(3) = z X; —> max

=1
27

=

< s
X " Vil =[1,n].

The vector (xf, x?) is a maximum 3-flow in the presence of weights V = {v;eQ" : i=[1,n]} and

flows with input in age A. If ¢, is cycle of I which contains a, then by the capacity f(cy) of ¢k (with
respect to ap) we mean

fle)= 2 v, .
ifajeci
We say that the chaotic 3 =(A,C) is called a regular if for each a;e A which is not a loop of 3

and for any set of capacities V={v, ...,v,} the value of the maximum 3-flow equals the minimum ca-
pacity f™"(c) of ay, i. e.

PmaX(S) — fmin(ck).
Examples 2. (See fig.1). The picture is the illustration of the chaotic-flow.
Next, we are now in a position to state the problem of chaotic theory.

Problem JULIA. Let 3=(A,C) is a finite chaotic. Where 3 is a regular chaotic?
Theorem 2. Let 3 = (A, C) is a finite chaotic. a;e A is not a loop and for any set of capacities

V={vy, ...,.Va} (V¥V;=0) the value of the maximum 3-flow equals the minimum capacity fm‘”(ck) of ay,
i. e

P™(3) < f™(cy).
The proof and the algorithm are found in [2]. Detailed biologic interpretation sees in [3].
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2. Recognition Algorithm of Strength Chaotic Height

At a basic level, one would expect that bi-

ological chaos would address the question of how
one constructs the chaotic height for fundamental
objects in biology. As usual, biological fundamen-
tal objects (the amino acid sequences of proteins,
the neuron sequences) are strength of bio-objects
(b-objects). Any such list of objects gives the ob-
jects of a linear order. These mean that if o and B
are b-objects, then we can say that o <  if o pre-
cedes 3 on the list. A structure different from line-
ar order early gives a chaotic combinatorial con-
figuration on b-objects. If the list has n b-objects,
the linear order must map these objects to the set
1,2,3,...,n.

Furthermore, one might expect that the linear order

have chaotic height of strength (chs) null.

Definition 4. A permutation of n distinct Fig. 1. W. Kandynsky, “Flow”.

b-objects of length i is an ordered arrangement of
any i of the b-objects and is denoted “in. By P(n) denote the permutation of n distinct b-objects of

length n. A permutation P(n) is frequently called a permutation of n.
Examples 3. For example, the permutation of S, = {a,B,x,06} of length 2 are af, ay, ad, Ba,
By, BS, xa, xB, %o, da, 6B, and dy.
Theorem 3. The number of permutations of n b-objects of length i is
wPn)=nxmn-1)x...x(n-i+1).
The proof is given in exercises.
Definition 5. Let P(n) is a permutation n. A strength chaotic height (sch is denoted A(P(n)) of

P(n) is equal to A(P"(n — 1))xn + (ig — 1) if n is odd number and sch is equal to A(P"(n — 1))xn + (n — iy)

if n is even number, where P’(n — 1) is a permutation n — 1 is equal to P(n) without n and iy is position
nin P(n). M(P(1))=0.

A relative strength chaotic height (rsch is denoted y(P(n))) of P(n) is equal to A(P(n) : nl,
wherenl=1x2x,..xn,

Examples 4. For example, we computation A((2,3, 1,5,4)) and %((2,3,1,5,4)). We have
M(1)) =0. Therefore, we have

M(L)=0=> M(2,1)=0x2+(2-1)=1;
M2 1))=1= M(2,3,1))=1x3+(3-2)=4;
M(2,3,1)=4= M(2,3,1,4) =4 x4+ (4—4)=16;

M(2,3,1,4)=16 = A((2,3,1,5,4))=16 x5+ (4—1)=83.
Finally, we obtain ((2, 3, 1, 5, 4)) =83/120 ~ 0.69167.

Theorem 4. If P(n) is a permutation n, then
0 <A(P(n)) <nl
The proof is trivial.
Corollary. If P(n) is a permutation n, then 0 < x(P(n)) < 1.
The sch and rsch algorithm is listed in Algorithm 1. If necessary operate with a large num-
bers, then see an algorithm in [5, 6].

/********************* Algorlthm 1. kA Ak kA h kA hkhkrhkhkhkhkhkkhkrhkhkhkhkhkhkrxkhk kkx*xk*x*x
challenge:
#include "heiperm.cpp"
void main ()
{
int perm[6]={0,2,3,1,5,4};
int lambda=hperm(5,perm) ;
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double hi=rhperm (5, perm);
bi
********************************************************/
int hperm(int n, int *perm)
// Commentary 1
{
if (n==1) return O0;
else
{
int* perml; // Commentary 2
int j;
int i0; // Commentary 3
perml=new int[n]; // Commentary 4
i=1;
for (int i=1l; i<=n; i++)
{
if (perm[i]!=n)
{
perml[j]l=perm[i]; Jj++;
}
else iO=i;
};
int lpnl=hperm(n-1,perml); // Commentary 5
delete [] perml; // Commentary 6
if ((n%2)==1) // Commentary 7
return lpnl*n+(i0-1);
else return lpnl#*n+(n-i0) ;
};
};

double rhperm(int n, int *perm)
// Commentary 8
{
long £=1;
for (long i=1l; i<=n; i++) f=f*i; // Commentary 9
double hp=hperm(n,perm) ;
return hp/f;
};

3. Combinatorial Configurations. Prolog of Dynamics Methods

A man growth is the cell’s (combinatorial configurations!) phase transitions:
gamete — embryo — snake — fish — animal — children — man(woman) — gamete.

Definition 6. Further, let
K=(A B),Bc2*
be a combinatorial configurations. Suppose I'k=(V, E)
is a K-hypergraph (or simple a hy-pergraph) with
hypervertex set V = B, hyperedge set E — B xB and
ground set A. We write hyperedges as e = (by,b,), when
bi,b,eB and by n b, # &. If by and b, are the end
vertices, we call them adjacent and write b; <> b,. The
elements of the ground set A are called microelements
I'k. All K-hypergraphs T'x (and the combinatorial
configurations K) are assumed without further comment
to be connected and finite, let K = (A, B) is a chaotic. Fig. 2. 7-hypergraph T;.

Examples 5. (See Figure 2) The 7 -hypergraph
I'yis uniquely determined by Figure 2.
Let K = (A, B) is a chaotic. I'x=(V, E) is a K-hypergraph. Given TcV, set X, = {VaveT :
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3teT, t <> v} is called the crown of T and & | ={e=(vy,Vo)€E : vieT, v,¢T} is called the igl of T.
Define the crown-saturation of I' by

SUy=min i),

and let the igl-saturation of ' by
SEyEmin (i y))}
ToV

A hypergraph T is called e-igllable if S& | =€ and a hypergraph T is called B-crownable if S} = B,
where g,€(0,1). An automorphism of T'x is a bijection f: V —— V that induces a bijection of
or. E—— E. The set of autorphisms of I'x forms a group denoted 4u#(I'k). We say that a subgroup
G < Aut(I'y) is transitive if for Vvy,v,€V, there is some geG such that g(vi) = v,. We call the
hypergraph Tk itself transitive if 2ut(I'x) is.

Theorem 5. Z; be a cyclic group of , nmeZ . If G be a finitely generated commutative group
and 7 a finite generating set for G, then

6=29.9797 97 9 9z

n+m = u(9).
The proof of theorem 5 and detailed information are in [7].

Definition 7. Let G be a finitely generated commutative group and 7= {js, ..., jn,Cs, ..., Cm} b€
a finite generating set for G, see (0.2.34). The Groener hypergraph (G-hypergraph) I®=T'(G, 9) of isa
K-hypergraph with microelements set A = G and hypervertex set V = {v = gj : geG, jeg}, and
hyperedge set E contains a pair (V1,Vs), Vi,Vo.€V, Vi NV, #= .

Examples 6. A cell bisection process is the phase transition of 7= {c,, C,}.

A «gamete — embryo» process is the phase transition of 7= { j, €y, C2}.

A «animal — childreny process is the phase transition of 7={ ji, Cy, ..., cm}.

A «children — man(woman)» process is the phase transition of 7= {cy, ..., ¢m}.

Furthermore, a locally compact group G has a unique invariant o-finite Radon measure | * [°;
it is unique up to multiplicative constant [7]. For VYgeG, the measure S — | g(S) I° is invariant,
whence there is a positive number d® such that | g(S) [* = d¥ x| S[° for all measurable S. The map
g — d? is inducers homomorphism from G to the multiplicative group of the positive reals and is
called the modular function of G. If d = 1 for YgeG, then G is called unimodular. We call
a hypergraph I'x unimodular if Aut(I') is.

Theorem 6. We give the group Aut(I'x) of a hypergraph I'k the topology of Microscope
method. Suppose there is a transitive unimodular closed subgroup G* of 4ut(I'k), then 4ut(G*) is also
unimodular.

The proof of theorem 6 and detailed of Microscope method are in [5], [7] and [8].

Therefore let K = (A,B) is a chaotic and I'x = (V,E) is a K-hypergraph. The stabilizer s#(v) =
{geaut(T'x), veV : g(v) = v}, of Yve V is compact and so has Grit measure [7]. Note that if g(v*) =
w, then s(w) = (g(s¢(v*))) g~', whence lsew) ° = I(s(v*)) g™ = (d9) " I(se(v*)) °.

Theorem 7. A K-hypergraph I'k =(V,E), K = (A,B) is unimodular < for Vv;,v,€V = B in the
same orbit, |s¢(vy) [° = [st(v,) .

Corollary 7.1. If '« = (V,E), is transitive, then I is unimodular < [s¢(v;) [° = s¢(v,) ° for all
neighbors v, and vy, Vi,Voe V.

The proof isin [7].

Unimodularity of 2uy(I'k), 'k = (V,E), K = (A,B) is finite combinatorial property.

Theorem 8. Let T'x=(V,E), K = (A,B) is a K-hypergraph. Let | * [° denotes cardinality for
subsets V and Hrit measure for subsets 4u(I'x). Then for any vertices vi,v,eV,
l(Se(vi))V2 [ 7 [(st(v2))v 1° = se(vy) P / [se(v,) [°;
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thus, I'k is unimodular < for Vv;,v,eV = B in the same orbit,

(stv))V2 ° = I(st(v2))vy I°.

Theorem 9. Let I'k=(V,E), K = (A,B) is a K-hypergraph. If T'x is transitive, then T'kis

unimodular < (0.2.36) holds for all neighbors for any vertices v;,v,eV.

Finally, let G be the finitely generated commutative group and ~(G) be the space of
measurable real-valued functions on G that are essentially bounded with respect to the measure. A
linear functional on £(G) is called a babaj if it maps the constant function to the number 1 and non-

negative-functions to non-negative numbers. If e £(G) and geG, we write Ly(¢ (X)) = ¢ (9(x)). We

call a babaj & invariant if & (£4(9)) = R (¢) for YgeG. We say that G igllable if there is an invariant
babaj on £(G).

Let [ = (V,E), K = (A,B) is a K-hypergraph. Given aset T V, let | T2 =% |si(v;) P. Say

VveT

that a transitive graph T is @-igllable if for Ve >0, £ €(0,1), there is T < V, such that || ° <& [D .

Let /~(V) an infinite space of measurable real-valued functions on the vertex V of the K-
hypergraph I'k =(V,E), K = (A,B). A babaj on (”(V) is called invariant if Yo [”(V) has the babaj as
Ly(¢ ) with defines as function taking v = ¢(g(v)) for Vge_ 2ut(I'k).

Theorem 10. Let I'k=(V,E), K = (A,B) is a transitive K-hypergraph. Then I'kis ®-igllable <
Aut(T'y) is ®-igllable and unimodular.

If ['k is B-crownable, then this concept is the same as ¢-igllable.
The proof of theorems 8-10 and computational algorithms are in [4] and [7].
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I'pumcax-I pénep B.B., I pumcax-I pénep IO.
Xa0THKH U UX NpuMeHEHUsA B OHOBBLIUNCJIEHUAX

Wnest «xoMOMHATOPHOTO XaoTHKa» ObLIa MepBOHAYAIBHO Npeaioxena B. B. I'punakom-I"pénepom B ero HoBa-
TOpckoit cratbe [1]. B HacTosimel craTtbe MBI CTPOMM MOJIENIb KOMOMHATOPHOTO XaOTHKa M3 Habopa 0OBEKTOB
OGronH(pOpPMaTHKH:

a) IOTOKH B Xaoce;

b) xaoc B mepecTaHOBKax;

€) Xaoc B KOMOMHATOPHBIX KOH(DUTYPAITHIX.
MBbI TakKe CTPOUM BBIYUCIMTEIIBHBIC ATOPUTMBI IIPOOIIEM a)-C).
Kniouegvie cnosa: xaoc, cuHepreTnka, OMonHGOpPMaTHKa, aITOPUTM Xao0ca.
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