Thinking and quantum physics: the Godel and Tarski theorems and uncertainty principle

Authors

  • Aleksandr Bukalov

Keywords:

quantum mechanics, quantum-mechanical thinking, metamathematical paradoxes, formal-semantic uncertainty relation, artificial intelligence, quantum computer

Abstract

It is shown that the quantum-mechanical regularities of thinking found their reflection in the metamathematical paradoxes and they are expressed by the Godel and Tarski theorems. It is proposed the uncertainty relation for formal and semantic describing of the objects in metamathematics, and also an explanation of the “paradox of a liar”. The obtained results can be used in creation of artificial intelligence on the base of quantum computers.

References

Букалов А. В. Психика, жизненные процессы и квантовая механика — феноменологический подход. //Физика сознания и жизни, космология и астрофизика. — 2001. — № 1.

Букалов А. В. Расширенная квантовая механика. //Физика сознания и жизни, космология и астрофизика. — 2002. — в печати.

Клини С. К. Математическая логика. — М.: Мир. — 1973.

Пуанкаре А. О науке. — М.: Наука. – 1983.

Френкель А., Бар-Хилел И. Основания теории множеств. — М.: Мир. — 1966.

Mensky M. B. Quantum Measurement and Decoherence: Models and Phenomenology. — Dordrecht: Kluwer Academic Publ., 2000.

How to Cite

Bukalov, A. (2001). Thinking and quantum physics: the Godel and Tarski theorems and uncertainty principle. Physics of Consciousness and Life, Cosmology and Astrophysics, 1(2), 5–8. Retrieved from https://physics.socionic.info/index.php/physics/article/view/243

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 10 > >>