# On the physical nature of gravitation

## Authors

• Valentine Oleinik

## Keywords:

accelerated motions of particles by inertia, free-fall laws, physical nature of gravitation, physical meaning of gravitation constant, the degree of incompleteness of the Newtonian scheme of mechanics, physical nonequivalence of various co-ordinate system

## Abstract

According to the results of our previous research, the accelerated motions of particles by inertia give rise to the attractive force between particles. In this article the usual free-fall laws of a small trial body on surface of the large one are inferred from the accelerated inertial motions concept. Thus, the simple physical explanation for gravitation phenomenon is found, without using the hypothesis that a special force field exists as a property intrinsically inherent to substance particles, and also without using the concept of gravitational mass and the principle of equivalence of inertial and gravitational masses. The results obtained allow one to conclude that the physical nature of gravitation is uncovered: the reason of gravitation is the accelerated motions of particles by inertia. The foundation is laid for the theory of gravitation as a physical one.
The Newtonian theory of gravitation is an approximate, phenomenological theory, which is valid only on certain conditions. The physical meaning of gravitation constant γ is elucidated. The numerical estimate of the magnitude of γ made with the formula obtained in the paper is in good agreement with observational data. According to the results of observations performed at different years, the value of γ varies with time. This is due to the fact that γ is not a fundamental constant, but a quantity that depends on parameters which define the celestial bodies motion and undergo small fluctuations in the course of time.
An arbitrary motion of classical particle is a linear combination of two motions: the accelerated motion by inertia Dinertial, taking place without any expenditures of energy, and the forced motion Dforced, taking place under the influence of an external force. Superposition of the forces, generated by accelerated motions by inertia in multiparticle systems, leads to appearance of a special force field which plays the role of a physical medium inseparable from paticles. The knowledge of the mechanism of formation of the medium allows one to describe its physical properties and to explore its behaviour and interaction with the particles generating it.
Out of the non-enumerable set of motions being described by linear combination of motions Dinertial and Dforced, a single motion Dforced is taken into account in Newtonian mechanics. Thus, the continuum of motions drops out of the field of view of mechanics - such is the degree of incompleteness of the Newtonian scheme of mechanics as the research technique of nature.
The type of the equation of motion describing the perturbation of physical system, being in a state of accelerated motion by inertia, under the action of external force is established. It is shown that various co-ordinate systems as the analysers of motion are physically noncompletely equivalent in respect to the accelerated motions by inertia. It is due to the fact that the physical content of the concept of degree of freedom of particle appears to be different in various co-ordinate systems.

## References

Гегель Г. Философия природы. Энциклопедия философских наук. Т. 2. — М.: Мысль, 1975.

Фейнман Р. Характер физических законов. — М.: Наука, 1987. — С. 33–34.

Бриллюэн Л. Новый взгляд на теорию относительности. — М.: Мир, 1972.

Олейник В. П., Прокофьев В. П. Вращательная инерция и ее физические следствия. Что такое гравитация? // Физика сознания и жизни, космология и астрофизика. — 2008. — Т. 8. — №2 (30). — С.23–56.

Олейник В. П. Новый подход к проблеме движения: ускоренные движения по инерции // Физика сознания и жизни, космология и астрофизика. — 2009. — Т. 9. — №3 (35). — С.24–56.

Арепьев Ю. Д., Олейник В. П. Траектории ускоренного (криволинейного) движения классической частицы по инерции // Вестник МАЭН. Вып.7. / Под ред. Д. Н. Жданова. — Барнаул: ООО «Статика», 2010. — С. 13–20.

Олейник В. П. Ускоренные движения по инерции: гравитация и аномальные явления // Биоинформационные и энергоинформационные технологии развития человека. / Под ред. Д. Н. Жданова. Т.1. — Барнаул: ООО «Статика», 2009.— С. 9–16.

Parks H.V., Faller J.E. A simple pendulum determination of the gravitational constant. arXiv:1008.3203v3 [physics.class-ph].

Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Т 1. Современная наука о природе. Законы механики. — М.: Мир, 1967.

Астахов А. В. Курс физики. Т.1. Механика. Кинетическая теория материи. — М.: Физматлит, 1977.

Боголюбов Н. Н., Ширков Д. В. Введение в теорию квантованных полей. — М.: Физматлит, 1976.

Лорентц Г. А. Теории и модели эфира. — М.; Л.: Объединенное научно-техническое издательство НКТП СССР, 1936.

Гегель Г. Об орбитах планет. Философская диссертация. // Гегель. Работы разных лет. — М.: Мысль, 1970.

Головнев А. Конечная Вселенная. Книга вторая. Физика конечной Вселенной. Альтернативная физическая концепция. — К.: Издательский Дом Д. Бураго, 2003.

Федулаев Л. Е. Физическая форма гравитации: диалектика природы. — М.: КомКнига, 2006.