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We study the pattern recognition algorithms of combinatorial chaos (chaotic). First
chaotic introduced in [1]. There are the most universal mathematical construction of chaos and,
contrary to all the others, expand the notion of chaos even to finite structures. We give a
mathematically exact characterization of chaos in finite sets. For example, a class of chaotic,
that is “whirligig” and corresponds to granular chaotic structures, is proposed. The examples of
recognition of minimum by the amount of elements among all the others (whirligig, anthill,
disorder and quasimatroid etc) are given.
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Pecpepar

TouHoe u BceoOBeMITIONIEE ONpEACICHUE MTOHATHS Xaoca — OJHA W3 HauOOJBIINX IPoOIIeM
MaTeMaTUYECKON (PU3UKU M B 1IeJIOM MareMaTHKH XX Beka (cM. [3] u [4]), Tak u neperie/iias Hepe-
mennoit B XXI Bek. MojHoe nousitue ¢gpaxmanvrocmu ((ppacmenmaprocmu, Kak 3T0 Ha3bIBAIOCH
MEPBBIM aBTOpPOM — A. ManbiieBsIM B 1929 1.) He sABIIIeTCS ONpeaeieHHEM XaOTHIECKOTO O00BEeKTa
WK TIporiecca. BoNbIIMHCTBO M3BECTHBIX (PpaKTaioB (Hampumep, TpeyrodbHUK JKopaaHa wimm KoBep
CepnuHCKOT0) HE XaOTHYHBI, TaK KaK OOJIAAAar0T YETKO OMPEACTICHHBIM CTPYKTYPHBIM (HE XaoTHue-
ckuM!) cTpoeHueM, cM. puc. 1. A B cilydae KOHEYHBIX O0BEKTOB BOOOIE HETPUMEHUMBI, TOCKOJIBKY B
onpeneneHny (paKkTaIbHONW pa3MEpPHOCTH, SIBIAIONIEHCS €IMHCTBEHHBIM KPUTEPHEM pPaclo3HaBaHUS
(dpakTanbHOCTH, HEOOXOAUM ABYKPATHBIN MpEAEIbHBIN Mepexo, KOTOPbIH, B CBOIO OYepeab, TpeOyeT
OECKOHEYHOTO YHCIIa DIEMEHTOB.

Puc. 1. ®urypa u JuHus ApodHOI pa3MepHocTH: KoBep CepnuHCKOroO.

BooOriie ¢usnyeckas IICHHOCTh TaK HA3bIBAGMbIX ()PAKTAJIOB — B MX JAPOOHOH (hpaxmanbHoll
pazmeprocmu, a He B TOM, YTO OHU MOTYT CIYKHTh IPUMEpPaMU XaOTHYHOCTH. XOTS HEOOXOAUMO OT-
METHTb, YTO (ppaKTanbHas pa3MEPHOCTH HE SBISAETCS MPOCTPAHCTBEHHON XapakTepucTukoil. [loaTomy
MOITYJISIPHBIA «KPUTEPHHA XaOTHIHOCTH» 00bekTa O: |dim(O) — dih(O) |>0, roe dim(O) — tomooru-
Yyeckas pa3MepHOCTh (mpocTpaHcTBeHHas!), a dih — dpakTanbHas pa3MepHOCTh (HE MPOCTPAHCTBEH-
Hast!), BCEero JHIIb IpUMEp aHEKIOTHIECKOH QOpMYIIb, T1e SOJOKH BEIUUTAIOTCS U3 CTyJIbeB. OObeK-
TBI C IPOOHON NPOCTPAHCTBEHHON Pa3MEPHOCTBIO CYIIECTBYIOT (CKakeM, puMepsl [IoHTpsATHHA) U X
CIIelyeT paclio3HaBaTh HEMOCPEICTBEHHBIM BBHIYUCICHHEM TOIOJIOTHUYECKON Pa3MEpHOCTH. DTO Tpes-
CTaBJISIET OYCHb HHTEPECHYIO MTPOOIeMy HOBEUIIEH (hU3MIecKOl HAYKH — «KOMITBIOTEPHOU (PU3UKIY.
B xoHIIE KOHIIOB, Yy BCEX KIACCHUYECKUX ()PAKTAJIOB HET MPOCTPAHCTBEHHOW IPOOHOW pa3MEepHOCTH.
Hampumep, Tpeyronpank XKopaana n koBep CepnrHCKOTO 001a1al0T pa3MepHOCTHIO 0.

Kak 3ametniin Bce aBTOpEI, nepenieqmne K GppakTaabHbBIM METOJUKAM, CTOXaCTHUECKHE U Be-
POATHOCTHBIE OOBEKTHI U TIPOLIECCHI TAKXKE HE aJIeKBAaTHBI XaoTH4eckuM. [IpuyrHa HeaaeKBaTHOCTH —
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00s13aTeNTbHOE BHIMIOJIHEHHE 3aKOHA a/ITATHBHOCTH (aKCHOMa TEOpHHU BeposiTHOCTH!). B Hamem moaxo-
Jie CTOXaCTUYECKUI OOBEKT MOXKET OBITh Xa0THYECKUM TOJIBKO B CHELMAIBHBIX BHIPOXKICHHBIX CIyda-
SIX, KOTJIa akCUOMa aJJUTUBHOCTH CTAHOBUTCS HECYLIeCTBEHHOH. Hampumep XaoTwWdeH, mpu paBHO-
MEpHOM KJIaCTEPHOM paz0ueHnH 00BbeKTa (CM. puc. 2).

Puc. 2. [Ipumep paBHOMEPHOT0 KJaacTepHoOro pazouenus — P. Marpurrt, «OKHO».

C nmpyroii cTOpoHsl, JII000H YMTaTEIh HALleH CTaThH C A0COMIOTHON TOYHOCTBIO CKaXKeT, 4To,
HanpuMmep, 1eJI0YUCICHHBIN KOHEUHbIN KOT4YaH:
07070707070707070707(A)
HE SIBIISIETCS XaOTUYHBIM. A KOJTYaH:
37011452770333346751(b),
CKopee Bcero, xaoTudeH. Pa3paboTraHHass HAMU TEOPHUs TOJHOCTHIO MOJATBEPKAACT HHTYUIIHIO HAIIIHX
yuraTesnei: komdad (b) — xaoTuuHbIH, a KomyaH (A) HE XaOTHYHBIMH.

Bosnee Toro, Mbl peasiaraeM ajaropuTMbl paciyeTa YHCIOBBIX XapaKTEPUCTUK UX XaOTHYHOCTU
(cymecTByeT Teopusi, TaKXKe pa3paboTaHHAs HAMH, KOTOpas paCCUMTHIBAET CTENEHb CTPYKTYpPHUPOBAaH-
HOCTH, HanmpuMep, kKomdaHa (A), HO MBI €€ IPEUIOKUM B MOCICAYIONINX HAIIUX CTAThAX U KHHUTaX).

Wpes nocTpoeHus: XaOTUUHBIX CTPYKTYp Oazupyercs Ha GpyHIaMEHTaIbHOM (haKTe OCHOBAaHMUI
COBPEMEHHOH MaTeMaTHKHU (2 TakKe TOIOCHOM TEOpHH), TJIACSILIEM, YTO JIF00ast CTPyKTypa Ha MPOU3-
BOJILHOM MHOKECTBE OMNpEAEISIeTCs CBOUM Kiaaccughukamopom [5]. B cnydae Oynumana, 4ero gocra-
TOYHO JJIsl BCEH KIIACCUYECKOW MaTeMaTUKU | AN OOJBIIMHCTBA (PU3NYECKUX MPUMEHEHHH, KIIacCH-
¢bukaTop onpezenser s 1000 napbl MHOKeCTB A U B, nprHaanexamux ucciaeayeMomMy npocTpaH-
CTBY I, BBIIIOJIHACTCS JIU:

AcBauboBc A ? (*)
OTcroa OueBUIHBIN BHIBOA:
Eciau s npoctpancTBa I M IJ18 NPOU3BOJILHON mapbl ero noamuoxkecTs A u B Biosxe-
HuA (¥*) He BBINOJHAIOTCH, TO I He 00J1aJaeT HHUKAKOii MaTeMaTH4eCKOH CTPYKTYpoOii, wim,
HHBIMH CJI0BAMH, HMeeT Xa0THYECKYH) CTPYKTYPY.

ITpocTpaHcTBa, 00IANAIONIME XA0THUECKONW CTPYKTYPOM, MbI Ha3biBaecM xaomuxamu. Ha mpo-
TSHKEHUH 3TOTO HAYYHOTO MOMCKA MBI HCCIIEYEeM TOIBKO KOHEUHBIC Xa0THKH, KOTOPhIC MBI HAa3bIBaeM
xomournamopHvimu xaomuxamu. (IlpuHmmn (*) mis OECKOHEYHBIX XaOTHKOB TaKXe BBIOIHICTCS U
SIBJIICTCS. €IMHCTBEHHBIM. HO HAc He yJ0BIETBOPSET COBPEMEHHAs TEOpHUs KOHEYHOCTH, UCCIICIOBA-
HUSI KOTOPOW Mbl HAYHEM B TMOCIEAYIONIMX M3BICKAHUAK, PE3YIBTATOM KOTOPBIX CTAHET OOBACHEHUE
MapaoKCaIbHBIX PE3YJIbTaTOB BBIYMCIMTEIBHBIX 3KCICPUMEHTOB MaiiopoBa B CTaTUCTHYECKOH (u-
3uke). [{si KoOMOMHATOPHBIX XaOTHKOB YJIaeTCs MOIYYUTh OOJIee-MEHEEe IETAIBHYIO KIIACCU(DUKAIIHIO,
CM. pHC. 9, ¢ MHTEpEeCHOW HMHTeprnpeTanueil. Hampumep, XaoTHKU TOJ| HA3BaHUEM 10d OONANAIOT
KPYITHO3EPHUCTBIM CTpOeHHUEM, a Mmypasetinuxu (anthill) nMeroT menkozepHHcTOE cTpocHHE. OUeHBb
HMHTEPECHBI CBOCU IKCTPEMATIbHOCTHIO KOMOMHATOPHBIC XaOTHKH, Ha3bIBaeMble Mampoudamu. Mar-
POUIBI — 3TO MPEJCIbHO BO3MOXHBIC Xa0THYECKUE CTPYKTYyphl. IMEHHO Ha 3TOM CBOMCTBE MATPOU-
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JIOB OCHOBBIBAIOTCSl HAIlM aJTOPUTMBI ONPEICIICHUS Mepbl XAOMUYHOCHU, PAaBHOH MHUHUMAaJIbHOMY
YHCITy 3MEMEHTApHBIX UTepaluii MUHUMAJIBHOTO aIrOPUTMa Ipeo0pa3oBaHUs UCCIEAYEMOT0 Xa0THKA
B MaTpoun. [locTpoeHue peanbHBIX MPOTPaMMHBIX pealu3aldii TaKUX ajJrOpUTMOB — OvpKaiIas,
OYEHb BA)XKHAS B IPUMEHEHUIX Mpo0iIeMa HaIUX KOJIJIET — KOMIIBIOTEPHBIX (DU3HKOB.

1. Introduction

A mathematical simulating natural process by deterministic dynamical biological systems re-
quires usually simplifying approximations and assumptions. All classical models of statistical physics,
for example: Gibson sums require infinite quantity of members, at least, denumerable or continuum. In
the physical realty we have always only finite, in order 10* (Avogadro number) quantity of elements
and biologic 10" (~number cells in man!).

In this point we give a formal (i. e. mathematically exact) characterization of chaos. In biology
applications we often come across the so-called Chaotic Models.

Example 1. Forest, glass, floack.

For the problems of the classification chaotic structures we can manage without continual ap-
proximation (“continuous paradise”) of the ground set model.

In the majority of publications the object O is called chaotic or fractal if:
| dim(0) — dih(0) | > 0, (1)

where dim(O), dih(O), respectively, topological and Hausdorf dimensions of the object O. Fractal
definitions (1) of chaos hat whole series of lacks. There are:

1. The strict definition and calculation dih(O) need infinite numbers of elements O.

2. dim(O) also can be nonintegeral and then (1) absolutely ineffective.

The second face of fractality is self-similarity, which indicate that:
fractals have the inner structure!

Chaos provides a groundset for randomness and all nondeterminism’s model. In such cases we
can't make predications that are far better than those we would except from a traditional model based
on the theory of random processes and other continues methods.

Therefore, if A is a set, and 2* is the set of all subset of A, then chaotic J is set of elements 27,
for which no exist one pair, which is ordered by inclusion of subsets A.

Chaotic as a finite combinatorial chaos model was considered first in 1989 (detailed see [1]).

2. Simplest Recognition Algorithm of Strength Chaotic Height

At a basic level, one would expect that biological chaos would address the question of how
one constructs the chaotic height for fundamental objects in biology. As usual, biological fundamental
objects (the amino acid sequences of proteins, the neuron sequences) are strength of bio-objects (b-
objects). Any such list of objects gives the objects of a linear order. These mean that if o and 3 are b-
objects, then we can say that o < 3 if o precedes B on the list. A structure different from linear order
early gives a chaotic combinatorial configuration on b-objects. If the list has n b-objects, the linear
order must map these objects to the set 1, 2, 3, ..., n. Further- more, one might expect that the linear
order have chaotic height of strength (chs) null.

Definition 1. A permutation of n distinct b-objects of length i is an ordered arrangement of

any 1 of the b-objects and is denoted M ; . By P(n) denote the permutation of n distinct b-objects of

length n. A permutation P(n) is frequently called a permutation of n.
Example 2. For example, the permutation of S, = {a.,3,%,0} of length 2 are af3, ay, ad, Ba,

By, B3, xaL, xB, xS, da., 3P, and dy.

Theorem 1. The number of permutations of n b-objects of length i is

p(P(n))=nx(n-1) x...x(n-i+1).
The proof is given in exercises.
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Definition 2. Let P(n) is a permutation n. A strength chaotic height (sch is denoted A(P(n)) of

P(n) is equal to A(P'(n—1))xn + (ip—1) if n is odd number and sch is equal to A(P'(n—1))xn + (n—iy) if n

is even number, where P'(n—1) is a permutation n—1 is equal to P(n) without n and i, is position n in

P(n). A(P(1))=0.

A relative strength chaotic height (rsch is denoted y(P(n))) of P(n) is equal to A(P(n) : n!,

wheren!=1x2x...xn.

Example 3. For example, we computation A((2,3, 1,5,4)) and %((2,3,1,5,4)). We have

M(1))=0. Therefore, we have

AM(1)=0 = M2, 1)=0x2+2-1)=1;
M2, 1)=1= M(2,3,1)=1x3+(3-2)=4;
M(2,3,1)=4 = M(2,3,1,4)=4x4+(4—-4)=16;

M(2,3,1,4)=16=  AM(2,3,1,5,4)=16x5+(4—-1)=83.
Finally, we obtain y((2,3,1,5,4))=83/120~0.69167.
Theorem 2. If P(n) is a permutation n, then

0 <AM(P(n)) <n!.
The proof is trivial.

Corollary. If P(n) is a permutation n, then
0<y(Pn))<l.

The sch and rsch algorithm is listed in Algorithm 1. If necessary operate with a large num-

bers, then see an algorithm in [1], [2].

/*********************<Alg0rﬁhn11 sk sfe sfe sfe sfe sk sk sk sk st ste st sfe sfe s sfe sk sk sk sk sk sk st ste sfe sk sfeskeoskoskoskoskoskok ok

challenge:
#include "heiperm.cpp"
void main()
{
int perm[6]={0,2,3,1,5,4};
int lambda=hperm(5,perm);
double hi=rhperm(5,perm);
15

********************************************************/

int hperm(int n, int *perm)
// Commentary 1
{
if (n==1) return 0;
else
{
int* perm1; / Commentary 2
int j;
int i0; / Commentary 3
perml=new int[n]; / Commentary 4
=1
for (int i=1; i<=n; i++)
{
if (perm[i]!=n)

42
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{

perml|[j]=permli]; j++;

else i0=i;
}5
int Ipn1=hperm(n-1,perm1); // Commentary 5
delete [| perm1; // Commentary 6
if (n%?2)==1) // Commentary 7
return Ipn1*n+(i0-1);
else return Ipn1*n+(n-i0);
35
33

double rhperm(int n, int *perm)

// Commentary 8

{
long f=1;
for (long i=1; i<=n; i++) f=f*i; // Commentary 9
double hp=hperm(n,perm);

return hp/f;

15

3. Logical Realization of 2LCA

We present here a formal definitions of a general combinatorial configurations (cc) and special
case cc — chaotic, independence systems.
A Combinatorial Configuration K is an ordered pair

K=(A,B),Bc2*
where A is a nonempty set. A is called the groundset of K, and elements of A are called the points of
K. The elements of B are called the configurations of K.

Example 4. (See figure 1). A={1,2,...,12}, and

B={{J}, {2,6,8}, {1,2,5,6},{7},{1,2,3,5,7,9,10,12}}, then K = (A, B) is a combinatorial con-

figurations.
A

A
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Figures 1-3.

Let I=(A,E), Ec2" is a combinatorial configurations. C. c. I is called independece systems if

(N) e; € E, then Ve, ce; = e; €E.
The elements of E are called the independence set of 1.

Example 5. (See figure2) A={1, 2, ..., 12}, and E = {{J}, {1,2,5,6},. . .{1,2,5}}. The pair
I=(A, E) is an independence system.

Let 3=(A,C), C<2" is a combinatorial configurations. J is called orderless systems or cha-
otic if

(H) Cl,CzeB & CiC C)=C;=Cs.

Ne1,2010 43



Physics of consciousness and life, cosmology and astrophysics

The elements of C are called the cycle of 3.
Example 6. (See figure3 ) A={1, 2, ..., 12}, and C = {{1,2,5,6}, ..., {10,11,6}}. The pair
3 =(A,C) is a chaotic.

Example 7. Let A are a pack of wolves and C are all coalition. The pair I = (A,C) is a cha-
otic.

Example 8. Let A are a swarm of bees and E are all subspecialisation. The pair V = (A, E) is
an independence system.

4. Chaotic Construction

Let 3=(A,C) be a chaotic. A set -(B)s < A is called a closure of a subset B — A if the follow-
ing conditions hold:

1) Bc-(B),
2) be—(B)5 \ B < there exists two f-sequences {q(i)}, {t(1)}, where a(i)eA, t(1)eC, a(i) # a(k),
o(n) =Db, t(i) # 1(k) such that a(i)et(i) cB U(U a(j)), where 1< i<k <n, j=[1,i], i =[1,n].

By —(B)5 denote a closer of a subset B < A in 3. A subset D — A is called a flat if (D)5 = D.
A minimal flat is called an atom. A flat P c A, u(P) =1 is called a loop.

Example 9. (See figure4). A={1,2, . . . 8}, Q={{1,2,34}, {1,2,5,6},{5,6,7,8}}.
—({1,2,3})s = {1,2,3,4}.

Let 3=(A,C) be a chaotic. A subset N c A is called independent in 3 if VyeC, y\N = &. A
subset S c A is a spanning subset of J if —(S); = A. Minimal spanning subsets B — A are bases of 3.
A maximal nospannig flat K < A is a coatom of 3. Con-sider the family E(J) of all bases of J; then
this family is called bases system of 3. Consider the family ®(3J) of all flats J. Consider the family
T(3) of all atoms of J; then this family is called body of J. Also, consider the collection H(J) of all

maximal are no spanning subsets in J; then this collection is called the interior systems of 3.

Figure 4-8.

Example 10. (see figure 4). For example, a independent set N={4, 8}. S = {1, 2, 3,4, 6, 7, 8}
is the spanning subset and no base. B = {1, 2, 4, 6, 7, 8} is the base. H = {1, 2, 3, 4, 5, 6} is the hyper-
flat.

Let 3=(A,C) be a chaotic and ac A be an element of A. The element a is a loop if agy for
v €C. And the element b is a coloop if bey for y€C. The chaotic obtained by separation of a, denoted
by 3\ a, is the chaotic:

1) (A\{a}, x: agyeC)ifaisnota coloop of J,
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2) (A\{a}, x\{a}: xeC)ifais acoloop of 3.

The chaotic obtained by detachtion of a, denoted by J/a, is the chaotic:
3) (A\{a}, y\{a}: aeyeC)ifais nota loop of T,
4) (A\{a}, y: xeC)ifaisaloop of 3.

A minor of J is a chaotic m-J that can be obtained from 3 by a sequence of separations and
detachtions.
A useful further specialization of these definitions is provided by

Let 3=(A,C) be a chaotic, C ={c¢;| ¢; <A, I =[1,n]}.

A pair 3°=(A,C°) be a complement of J if C° ={ C; | C; =A /c;,i=[1,n]}.

Denote by Bo(C) the family of all minimal subsets B of A such that BNc; # &, i = [1,n]. We
shall say that a map o : C —— Bo(C) is called a block operation and the pair Bo(3I) = (A, Bo(C)) is
called a blocker of 3.

Denote by By4(3I) the family of all minimal subsets B of A such that BNc¢; # &, i=[1,n], where
0 <d < pu(A) and u(B) = d. We shall say that a map Bq : C—— B4(C) is called a d-block operation and
the pair B4(I) = (A, B4(C)) is called a d-blocker of 3.

We say that a denor of J is a chaotic d-3J that can be obtained from I by a sequence of d-
block operations. An inor of 3 is a chaotic i-3 that can be obtained from 3 by a sequence of i-block

operations, where 0 <1< p(A).
Now we shall give the following propositions.

Theorem 3. Let 3=(A,C) is a chaotic, C={c; |c; <A, I = [1,n]}. Then the complement
3°=(A,C°) be the chaotic, where C° = { C; | C; = A/c;, i=[1,n]}.

Theorem 4. If 3=(A,C) is the chaotic, then the d-blocker B4(J) = (A, B4(C)) is a chaotic,
where 0 < d < pu(A).

Theorem 5. If 3=(A,C) is the chaotic, then

Bo(Bo(3)) =3. )
Theorem 6. If 3=(A,C) is the chaotic defined in definition 0.2.7 and 0< d < p(A), then
B (3) =B (3) ®)

where Z'3 v4>0and Z'> pa= 1. vq is called a d-tail of 3. pq is called a d-period of 3.
The proof is found in [1].

Theorem 7. If 3=(A,C) is the chaotic and I(J) —C is the set of all independence subsets of J,
then

I(3) = (Bo(3))°. 4)

5. Types of Chaotic

The main problem and hardcore of chaos theory is the classification of chaotic types of sets.
Here the general idea of classification is attach combinatorial invariants, which may by algorithms.
The ideal would be to have a combinatorial invariant which actually characterizes a chaotic type of
polynomial algorithms.
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It can be shown in the usual way that a matroid are limit’s chaotic between an order and a
chaos.

Let M=(A,Q) be a chaotic and Va,BeQ, anp = are cycles of M. We say that the chaotic M
is a matroid if Vaecanp =3dyeQ and x < (a0 N B)\{a}.

Example 11. (see figure 5). A={1,2,3}, Q={{1,2}, {2,3}, {1,3,} }. M=(A,Q) is the matroid.

Example 12. Let A=(A,Q) be a chaotic. A chaotic A is an atomistic if for every a close set

B < A there exists the sets of atoms A >a.;, i€ such that

—@Ja[@EB (5)

Example 13. A prokaryote P =(A,Q) is atomistic chaotic, where A is the body of P, the cycles
Q) are organs of the prokaryote P, every an atom a.€ A of the chaotic P is a cell of the prokaryote.
Let J=(A,Q) be an atomistic chaotic. An the chaotic J is a jula (jula-chaotic) if for every inde-

pendent set E (E < A) of atoms of J there exists an atom o < A and coa-tom T A such that

_E Ua[ E cr, where «; are the atoms of ] but ¢ & 7.
al

OE/o
Example 14. (see figure6). A={1,. . .10}, Q={{1,2,3,4}, {1,2,5,6}, {3,4,5,6,7,8},
{1,2,4,6,7,8,9,10} }. J=(A,Q) is the jula.

Let F=(A,Q) be an atomistic chaotic. An the chaotic F is a dust if for every independent set E

(E c A) there exists an atom 6 < A and coatom T A such that —E Ual. Ef cr, where a; are the at-
a,0E/ o

oms of F but o & 1.
Let H =(A,Q2) be an atomistic chaotic. By T, denote the set of atoms a*eT(H)> a such that

we have a*c a. An the chaotic H is a anthill if for every a close set B (B < A) and for every D

(A>DgTg) such that — E‘Jai %z D, where o are the atoms there is an atom a®eTp\D and an inde-
07

pendent subset E of D such that EU{a®} is not independent.
Example 15. (see figure 7). A={1,2,3,4}, Q={{1,2,3}, {4} }. H=(A,Q) is the anthill.
Let D=(A,Q) be an atomistic chaotic. By T, denote the set of atoms a*eT(D)> a such that

we have a*c a. An the chaotic D is a fog if for every close set B (B < A) and for every D (ASDzTjg)

such that — @Ja,. E; = D, where o, are the atoms there are the atoms ®o;e Tg\D and an independent
a7

subsets E;of D such that E;u{a"} are not independent.

Let K=(A,Q) be an atomistic chaotic. An the chaotic K is a quasimatroid if K is both a jula
and an anthill.

Example 16. (see figure8). A={1,. . .,5}, Q={{1,2,3}, {1,2,4},{1,2,5}, {1,3,5}, {2,3,5}}.
K=(A,Q) is the quasimatroid.
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Let L=(A,Q) be an atomistic chaotic. An the chaotic L is a formless if L is not both a jula and
an anthill.

Example 17. (See figure4). A={1,2, ... .,8}, Q={{1,2,3,4}, {1,2,5,6}, {5,6,7,8}}. L=(A,Q)
is the formless.

We may assume that a julies are modell of granular chaos and an anthills are mo-dell of uni-
formly chaos. These results can be summarized as follows.

Theorem 8. ] =(A,Q) be the jula defined in definition 0.2.10. If J is have not a loop B, then of
all cycle aeC
(o) 2 3. (6)
The proofs are found in [1].
Corollary 6.1. Suppose J=(A,Q2), W(A)<co be an atomistic chaotic; then there exists a poly-
nomial complex algorithm of to see that J be a jula.
Theorem 9. Let H=(A,C) be an atomistic chaotic and B < A be an arbitrary independence
subset of H. H is an anthill iff there exists an element beB such that
be(B/{b})° @)
The proofs are found in [2] or [1].

Corollary 9.1. Suppose H=(A,C), W(A) < oo be an atomistic chaotic; then there exists a poly-
nomial complex algorithm of to see that H be an anthill.

Nonatomics

Figure 9. Types of Chaotic.

Some other classifications of chaotic types will be given after blocking methods.
The semimatroid is close to matroids. Let P =(A,Q) be a chaotic. A chaotic P is a semimatroid
if B1(P) = P, where B, is the 1-block operation.
Theorem 10. Let P=(A,Q) be a chaotic and B — A be an arbitrary independence subset of P.
P is a semimatroid iff there exists an element beB and a hyperflat 'cA such that
I'NnB=B/{b} ®)
The proof is found in [4—6].

Corollary 10.1. Suppose P=(A,Q), u(A)<owo be a chaotic; then there exists a polynomial com-
plex algorithm of to see that P be a semimatroid.
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Theorem 11. Let M= (A,Q) be a chaotic. A chaotic M is a matroid iff
Bi(M) = Bo(Bo (M)°), )
where [y and [, are the block operation and the 1-block operation.

Corollary 11.1. Suppose M = (A,Q2), W(A)<cwo be a chaotic; then there exists a polynomial
complex algorithm of to see that M be a matroid.

6. Algorithms of Recognition of Degree of Chaotic

Many problems in physics, biology and medicine involve determining the measure of disorder
of several objects. For instance, finding that structure which computed chaotic degree can approach

determining the disorderly structure of swelling or tumor. We introduced the concept of x-degree (®-
simple degree) as a measure of disorder in a chaotic. We given the notion of x-degree and ®-simple)
degree algorithm schemes. These algorithms are discussed in more detail in [2].

Let 3=(A,C) be a chaotic. By dimh(3)eZ" denote a degree of disorder J. If I is a matroid,

then dimh(3J) = 0. Let 3* =(A*,C*) is an other chaotic. Further, ac A and a;€ A*. We can assume that

| dimh(3) - dimh(3*) | = 1 (10)
if the following conditions hold:
1) =3*\a,
2) =3*/a,

3) 3*=3\a,
4) 3I*=3/a.
The chaotics I and 3* are called adjacent.
A x-walk is a sequence L:
313,...3, (11)
of chaotics J;, i =[1,n], in which J; and J;, are adjacent, 3, is the input of L and J,, is the outcome of
L. We say that the chaotic 3, has x-degree n, if 3, is a matroid and L is a minimal x-walk. Moreover,

we say that the chaotic J, is called ®-simple degree n, if I, is ® and L is a minimal x-walk if the fol-
lowing conditions hold:

a) 1is an atomic;

b) is a formless;

c) isa fog;

d) isa dust;

e) isajula;

f) is an anthill;

g) is a quasimatroids.

Theorem 12. Let M =(A,Q2), A =, H, =(A,{(1,2), (1,3)}), H, =(A,,{(1,2,3)}) are a chaotics.
A chaotic M is a matroid iff M has not be x-walk L= 3,3,... 3, (11), where 3;,=M and 3,= H; or
Sn: Hl.

Corollary 12.1. Suppose M = (A,Q2), 0<p(A)<owo be a chaotic; then there exists a polynomial
complex algorithm of to see that M be a matroid.

The proof is found in [2].
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Further, in theorem13, we proved that the algorithm X1 is finite.
Theorem 13. Proposition 0.2.11. Let M = (A,Q), w(A) <o, is a chaotic. M has be a finite x-
walk L=3,3,. .. 3,, where 3;,=M and 3,=M,, where

Mo= (A1,{(D)}) (12)
is the homogeneous matroid.

x-degree degree algorithm scheme X1

Input: a chaotic I=(A,Q).
Compute: 3, 3;. .. 3, — a minimal x-way, where J,, is a matroid.
Output: the x-degree of a chaotic J is equal n.
A ®-degree degree algorithm scheme (X®) of a chaotic is defined similarly. The listings of
the algorithms X1 and X® are given in additional of the book [6].
Let 3=(A,C) be a chaotic. By dimB(J)eZ" denote a B-degree of disorder 3. If I is a matroid,
then dimB(3J) = 0. Let 3*=(A,CP) is an other chaotic. Further, acA and a;e A*. We can assume that
| dimB(3) — dimB(3*) | = 1, (13)
if the following conditions hold:
a) 3 =Bu3")=(A, BCh), 1 <d < p(A),
b) Ba(3I)=3F,1<d<p(A).
The chaotics I and 3P are called B-adjacent.
To complete the proof of J and I are chaotics, we use of theorem 12.
A B-walk is a sequence L:
3132... 3, (14)
of chaotics J;, i =[1,m], in which J; and J;+; are B-adjacent, J; is the input of L and J,,, is the outcome
of L. We say that the chaotic 3, has B-degree n, if 3, is a matroid and L is a minimal B-walk. More-

over, we say that the chaotic 3, is called Z-simple degree n, if 3, is Z and L is a minimal B-walk if the
following conditions hold:

a) 1is an atomic;

b) is a formless;

c) isa fog;

d) isa dust;

e) isajula;

f) is an anthill;

g) is a quasimatroid;

h) is a semimatroid.

We are now in a position to state the problem of chaotic theory.

Problem 1. Let H=(A,Q), 4< n(A) <o is a chaotic, 2 < B. H has be a finite p-walk
L=3,3,...3,(14), where 3, =H and 3,,= B. Where the binor

B =(A, Q*) (15)
1s a matroid?

A B-degree degree algorithm scheme X[3 of a chaotic is similarly X1. The listing of the algo-
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rithms X is given in additional of the book [2].
B-degree degree algorithm scheme Xf3

Input: a chaotic I =(A,Q).
Compute: 3, 3,. .. 3, — a minimal 3-way, where the binor J,, is a matroid.

Output: the B-degree of a chaotic J is equal m, or we have the counterexample to problem 1.
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Cmamus nocmynuaa 6 peoaxyuro 12.05.2010 a.

I'pumcax-I'pénep B.B., I pumcax-I pénep FO.
MartemaTH4ecKHe aCleKThI Xaoca

N3y4aroTcs anropuTMbl Pacro3HaBaHUS KOMOMHATOPHOTO Xaoca (XaOTHKOB). BrepBble XaoTHK ObLI
BBe/ICH B pabdote [1]. 1o Hamboee yHUBEpcambHAs KOHCTPYKITHS Xaoca, KOTOpasi, B OTIINIHE OT JIPY-
TUX KOHCTPYKIUH, IPUMEHUMA U JIJIi KOHEUHBIX CTPYKTYp. bosee Toro, Mpl BIepBBIE CTPOTO U TOYHO
XapakTepU3UpyeM U KIACCHPUIUPYEM XAOTHUECKHE CTPYKTYPHI JJsl KOHEYHBIX MHOXeCTB. Kiaccu-
(buKanys npejCTaBIseT WHTEpPEC JJIs MONYUYCHHUS aJICKBATHOTO COOTBETCTBHS C PEabHBIMU Xa0THYe-
CKMMHM CTpyKTypamu. Hanpumep, Ki1acc XaOTHMKOB, KOTOPBI COOTBETCTBYET «BHXPSIM», aIE€KBAaTCH
IpaHyJUPOBAaHHBIM CTPYKTypaMm. J[JIsl KaKJoro XaoTHUECKOro Kiacca (BUXphb, MypaBeWHUK, Oecriopsi-
JIOK, KBa3MMAaTPOH] U JIP.), MBI PACIIO3HAEM CTPYKTYPhl ¢ MUHHMAIBHO BO3MOXKHBIM YHCIIOM JJIEMEH-
TOB.

Kniouesvie crnosa: xaoc, alropuTM, MaTpouI.
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