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We introduced the notions control of chaotics, i.e. control the finite chaos structure. 
Further we introduce the notion control strategy. In section 2 review some of the standard facts 
on control for chaotics. In section 3 have complied some basic facts of chaos flows control 
with penalty function. Section 4 is devoted to the study of control strategy against external 
controller and antiterrorist control strategy. Let us the groundset Αℤ×ℤ. to the case under 
discussion in section 5. In section 6 we gave the direct algorithm оf single-center infection on 
ℤℤ with the ramified boundary of the ground-set Αℤ×ℤ. Finally in section 7 we gave 
inverse algorithm for computational disaster advances(DA)оf single-center infection on ℤ×ℤ 
with the ramified boundary of the ground-set Αℤ×ℤ. Also we designed and developed a set 
of algorithms for construction of the arbitrary and concrete chaotic set that can efficiently be 
used in evaluations of the propagations autooscillatory geotectonic waves. 
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Nichts war noch vollendet, eh ich es erschaut,  
ein jedes Werden stand still.  
Meine Blicke sind reif, und wie eine Braut  
kommt jedem das Ding, das er will.  
 
Nichts ist mir zu klein und ich lieb es trotzdem  
und mal es auf Goldgrund und groß,  
und halte es hoch, und ich weiß nicht wem  
löst es die Seele los... 

Rilke 

1. Introduction 

Let the set B be the disaster advances. We will consider the general direct algorithm for viral 

extension and other disaster advances (DA) is given by the closer of the set B   for the chaotic a 

chaotic H = (, ),   2. Let t is an iteration number of DA. Hence B is the disaster zone. The DA 
takes the extension B to ↝(B) 

B  C1 . . .  Ci  . . .  Ct = ↝(B)  ,  (1) 

where Ci is the part closer of B. Cycles k are elements of . Let t be given by Ct+1  t  Ct+1. Then 

t is interpret of the disaster source. The inverse algorithm for computational disaster advances (IDA) 

is given by coordinates of infection sources {t}, t = [1, n], n = . 

Let us the groundset   ℤℤ. to the case under discussion in section 5. In section 6 we gave 

the direct algorithm оf single-center infection on ℤℤ with the ramified boundary of the ground-set  

 ℤℤ. 
Finally in section 7 we gave inverse algorithm for computational disaster advances(DA)оf sin-

gle-center infection on ℤℤ with the ramified boundary of the ground-set   ℤℤ. 
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2. Glossary 

1.1. For convenience of the reader we repeat the relevant material from [5]. 

Let A, B be the sets. A ℱ : A ▬¤▬► B is the multimap(mm) ℱ : A  2B. 

The pair G = (ℱ , A) is called a control graph G of mm ℱ. The elements of the set A are a 

nodes of G. The pairs u = ( , ℱ()) are called an arrows of G, where the  is a tail of u and ℱ() is a 

spike of u. ℕ(n) 
def

 {kℕ: k  n }. ℜ = (Ai : iℕ(n)) is called an indexed family. An indexed family 

ℜ is called a personal family if Ai  Aj when i  j. By definition put c
iA A \ iA . A family sets cS = {

c
iA : iℕ(n)} is called a complement of the S = { iA : iℕ(n)}. 

Suppose 

ℋ = (A : Ci, iℕ(n))  (2) 

is an personal family such that 

1) (Ci)  , 

2) if Ci  Cj  Ci = Cj when i  j. 

We call ℋ a chaotic (chaos) on the set A. A chaotic M on the set A is the chaotic of circuits of a 

matroid  

M = (A, ℭ ={Zi}: Ci, iℕ(n)) (3) 

on the set A if  ℭ and ℭ satisfies the elimination axiom : 

(ax) whenever Z1  Z2ℭ and A Z1  Z2, there is a Z0ℭ with Z0  Z1  Z2\{}. 

A binary relation ≽ on A is called a prefer-

ence if ≽ reflexive, transitive, and complete. Let ≻ be 

a strongly binary relation on A. Then an acute hull 

⋙ of 
iff

  there exists a sequence  = 0, . . ., n=  

such that I ≻ i+1 (iℕ(n-1)). For every fixed *A 

let (≽ , *) = {A : *≽ }. Similarly, (≻ , *) 

= {A : *≻ }. 

Let U is a finite set. A digraph Ⅾ is a pair is 

a pair Ⅾ = (U , ≻). A ditree T≻ is a digraph (U , ≻) 

such that there exist an element °U (to be called a 
root of the digraph) having the following properties: 

a.  ⋙ ° (U), 

b. (≻ , °) = , 

c. ((≻ , )) = 1 (  °). 

The elements of the set U are a vertex of T≻. The pairs u = ( , ) are called an arrows of T≻ if (≻ , 

) = . 

ℤℤ is called square lattice over ℤ, where ℤ a ring of integer numbers. The ground-set A  

ℤℤ. Now consider a graph  = (V, E), where the vertex-set V = A and edge-set E = {eB, e 

{(i,j)V: (i-1,j), (i,j-1), (i+1,j), (i,j+1)}}. Before consider the inverse function on a graph , which 

 

Fig. 1. Dmytry Pollack. Disaster Zone. 
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can be written in the form 

() = 
( , )

i j

i j E

 

 
    (4) 

where ij is either 1 or –1,  = eI, here I is a number of iterations. 

Let W be the infection’s network on square lattice Q2 with ground-set A  ℤℤ. Suppose that 
there is a supply of disarder fluid (df) at the origin and that each edge of Q2 allows fluid to pass along 
it with probability p, independently for each edge. Let Pi(p) is the probability that vf spreads to at least 
i vertices. Thus 

PW = lim ( )i
i

P p


  

is called a critical probability of W.  

Proposition 1. See 5. The critical probability that vf spreads to at least vertices on the square 
lattice W is between 0.51 and 0.68. 

We shall say that the chaotic (2) is a controlled chaos ℋ, where [i]ℕ(n) is a controller, the 

index family (Ci , iℕ(n)) are a territory of the controller [i], and Z = {[1], . . ., [n]} is a control-

brigade (or brigade). The elements of set A are a position of control for the chaotic  

ℍ = (A : Ci, iℕ(n)), 

A is a position-set. Suppose the pair (Z1 , Z2) is partition Z when Z1 are an active controllers, and Z2 
are an passive controllers.  

We shall say that for the chaotic ℍ there exists a control if the following conditions hold: 

(a) we have a multimap 

Ω : A ▬¤▬►A,  (5) 

then this is called a law of the control; 

(b) for any [i] there exists a preferences ≽i, then this ≽i is called a preference of controller [i]. 

Let C0 
def

 ( : Ω() = ) and using a transformation of Ω we get Ω(C0)  Ck = , where k

ℕ(n).  

Suppose 0A be a beginning element of position. We shall say that a brigade Z = {[1], . . ., 

[n]} experts control over the chaotic ℍ if the following steps hold: 

1) let ([i], …,[j], …,[l])   (1 i  … j… ln) is maximum allowable of controller number 

such that Ω(0)  Ct  , where t(i, …, j, …, l) whence the controller [t] choose element of 

position 1
t  Ω(0), control is continue and we have the controllable positions 0, 1

i , …, 1
j , 

…, 1
l ; 

2) if ([i], …,[j], …,[l]) =  the control is finished; 

3) let t(i, …, j, …, l), if ([i1], …, [ir(i)], …,[j1], …, [jr(j)], …,[l1], …,[lr(l)])   is maximum al-

lowable of controller number such that Ω( 1
t )  

1t
C   , where t1(i1, …, ir(i), …,j1, …, jr(j), 

…,l1, …,lr(l)) whence the controller [t] choose element of position 1
1
t  Ω( 1

t ),control is con-

tinue and we have the controllable positions  
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(6) 

4) if ([i1], …, [ir(i)], …,[j1], …, [jr(j)], …,[l1], …,[lr(l)]) =  the control is finished; 

5) and so on, as so long the controller induce the nonempty positions in the ditree T≻ = (U , ≻) 

(6). 

A depth of control is called a lenght of maximal depath in T≻. 

A preference ≽i of controller [i] it is possibility represent such that a numerical bounded 

function fi(x): x  ℝ as follows:  ≽i   fi()  fi(). Then we shall say that a brigade Z = {[1], 

. . ., [n]} experts control with penalty function fi(x) over the chaotic ℍ. If a controller [i] is the ac-

tive, it is customary were more preferable to position of control with respect to ≽i, if
 (Ci) = sup

ix C
 fi(x) 

will be written in terminology of penalty function. If a controller [i] is the passive, it is not customary 

were less preferable to position of control with respect to ≽i, if
 (Ci) = inf

ix C
 fi(x) will be written in ter-

minology of penalty function. 

3. Chaos Flow Control with Penalty Function  

3.1. Consider a finite digraph  

Г = (V(Г), E(Г), v+, v -, ),  (7)  

where E(Г) is the arc-set, V(Г) is the vertex-set containing a source v+V(Г) and hole v -V(Г), and 

 : E(Г)  ℝ+ is the function defining the capacity of arcs.  

We can digraph Г (7) in form a chaotics ℋ = (A : Ci, iℕ(n)), where A = V(Г), Ci = E(Г), 

and  : E(Г)  ℝ+ is a penalty function, [i]ℕ(n) is the controllers. Preference ≽i give the penalty 

functions. All controllers is active. The law of control be determined next graphical constructions. 
Let  

P = {PV(Г) : v+P, v - P}.  

For PP, we refer to 

R(P) = {eE(Г) : +e  P, -e  P}  
as the cut corresponding to P and define its value of a penalty function by 

(P) = 
1

( )
r

i
i

e

 , eiR(P), r = R(P) .  

A flow in Г is a function  

 : E(Г)  ℝ +  

that satisfies capacity condition:  

0  (e)  (e)  

for each eE(Г) and the conservation condition: 

(+v) = (-v) 
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at each vertex vV(Г) distinct from e+ and e-, where  

(+v) = ( )
e v

e
 

  and (-v) = ( )
e v

e
 

 .  

A chaos flow control of digraph Г with the penalty function  : E(Г)  ℝ+ is maximization the 

value of flow . 

Proposition 2. See 5. The chaos flow control of 

digraph Г with the penalty function  : E(Г)  ℝ+ is 

equal to the minimum capacity of a cut. 

Corollary 2.1. Efficient algorithms of complexity 

such as O(V(Г)3) are known for finding a maximum 
flow. 

The proof and the algorithm are found in 1.  

3.2. The basic definitions of the terms pertaining to 
flows control in general chaotic are as follows.  

Let  = (A,C) be finite chaotic with the groundset 

A = a0,a1, . . .,am and the cycles C = C1,C2, . . .,Cd 

2A. a0A and is called the flows with input in a0 of . 

Given C(a0)  C, C(a0) = jC : j  a0, j = 1,r. 
And given  

V = vkℚ+ : k = 1,m, 

where vk is called weight of the element akA.  

There is a standard a chaotic flow control problem. Really, the chaotic  = (A,C) is the con-

trolled chaos. A is the position-set, [i]ℕ(d) is the controllers, Ci is the territory of the controller [i], 
and Z = {[1], . . ., [d]} is the control-brigade. The law of control and penalty functions be determined 
next chaotic constructions. 

Further, given the matrix M = ijnr, where ij = 1 if aij. Since aij, we have ij = 0. The 

matrix M is called flow-matrix across the cycles C(a0). Finally, define the flows F of  by 

(p1,p2, . . .,pr), pi ℚ +,  

where 

1

r

ij j i
j

p v

  , i =1,d.  

V = 
1

r

j
j

p

 іs called value of flows F. (The penalty function!) 

Examples. A blood flow, a limphe flow, a toxic flux, geotectonic flow, a peniciline 
propagation and other are examples for flow in chaos. 

Finally we assume that 

(
0
1x , ...,

0
rx )  

is the solution of the problem 

 

Fig. 2. Anatoly Fomenko. From the 
flows. 



Ôèçèêà ñîçíàíèÿ è æèçíè, êîñìîëîãèÿ è àñòðîôèçèêà 
 

 

 
¹ 4, 2015 29 

P() = 
1

r

j
j

x

  max  

1

r

ij j i
j

x v

  , i =1,d. 

The vector ( 0
1x , ..., 0

rx ) is a maximum -flow in the presence of weights V = vi ℚ+ : i=1,d and 

flows with input in a0A. If сk is cycle of  which contains 
a0 then by the capacity f(сk) of сk (with respect to a0) we 
mean 

f(сk) =
 i k

i
i a c

v

 .  

We say that the chaotic  = (A,C) is called a regu-

lar if for each a0A which is not a loop of  and for any 

set of capacities V=v1, ...,vd the value of the maximum 

-flow equals the minimum capacity fmin(сk) of a0, i.e. 

Pmax() = fmin(сk). (8)  
The figure 2 is the illustration of the chaotic-flow.  

Next, we are now in a position to state the problem 
of chaotic theory. 

Problem JULIA. Let  = (A,C) is a finite chaotic. 

Where  is a regular chaotic? 

Theorem 3. Let  = (A, C) is a finite chaotic. a0A 

is not a loop and for any set of capacities V=v1, ...,vd (vi 0) is the value of the maximum -flow 
equivalent the minimum capacity fmin(сk) of a0, i.e. 

Pmax()  fmin(сk).  

The proof and the algorithm are found in 2.  

4. Control Strategy against External Controller 

4.1. A field operator of the field S  A is a map  : S  A. Let  

Ω : A ▬¤▬►A  

is a law of the control for the chaotic ℍ = (A : Ci, iℕ(n)). A strategy of a controller [i] is the field 

operator 

i : Ci \ C0  Ω(Ci \ C0 ),  (9) 

where C0 = ( : Ω() = ) and Ω(C0)  Ci = . The controller [i] will be considered to have a fixed 

the strategy i. Let a row string is 

 
def

  (1, 2, …, n)  

such that i are the strategy (9). The multi map 

 : A\ C0 ▬¤▬►A  (10) 

 

Fig. 3. Ivan Nevidomyj. The Penetra-
tion. 
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is defined by requiring  to be the field operator i on Ci \ C0 , 

i.e. () = i(), where Ci \ C0 . 
Further let R = (i1, i2, …, ir) are the index of an active 

controllers, P = ℕ(n)\R = (j1, j2, …, jn-r) are the index of an pas-

sive controllers for control-brigade 
Z = {[1], . . ., [n]}.  

Z = {[i1], . . ., [ir], [j1] …, [jn-r]} = {ZR, ZP}. A multi map 

 (10) is called a strategy of a control-brigade Z.  

Theorem 4. A strategy  is defined uniquely of the con-

trol for the chaotic ℍ if C0 be fixed. 

Proof. The proof of the theorem 4 is similar. 

4.2. Suppose a row string  

{} = {1, …, k} 
is a set traversed the control position (see (6)), where k is a depth 

of ditree T≻. Further assume that a row string  

{°} = { 1
 , …, 

k
 } 

other a set traversed the control position. We call the strategy  preferable for a controller [i] of the 

strategy ° if for Ci () occur °() (() ≽i °()) and is denoted by  

{} ⋟i {°}.  (11) 

Theorem 5. The relation ⋟i (11) is a preference in a set of strategy of the control for the chaot-

ic ℍ. 

The proof is straightforward.  

The relation ⋟i (11) is called a strategy preference. 

4.3. A strategy preference ⋟i of controller [i] be written in terminology of penalty function f : 

{{}}  ℝ, where {{}} is the set all strategy (10). 

if
 () = sup (fi(x) : x{}) if [i]ZR,  (12) 

if
 () = inf (fi(x) : x{}) if [i]ZP.  (13) 

In terminology of penalty function the strategy preferance (11) is rephrased 

f()  f(°).  (14) 

4.4. Let i is an arbitrary strategy of a controller [i] and ℕ(n)\i is a control strategy  without 

strategy of the controller [i]. A strategy * = { 1
 , …, n

 } is called control strategy against 
external controller [i] if 

* ⋟i (i , *ℕ(n)\i ),  (15) 

where [i]Z. 
By (15) is meant the controller [i] there is nothing to prevent of every remaining controllers. 

Further a strategy * is called a safety control strategy if the strategy preference (15) be real-

ized for all controller [i]Z. 

 

Fig. 4. Salvatore Dali. The Pan-
demia. 
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Finally a strategy * is called a antiterrorist control strategy if the strategy preference (15) 

be realized for all exterior controller [n+1]Z, see figure 3. 
The algorithms of construction safety&antiterrorist control strategy for chaotic will be object 

of next paper. 

5. Direct Algorithm of Passive Control on ℤℤ (Algorithm 2) 

In sections 4-6 will be concerned of a problems control with one passive controller [1]-, posi-

tion-set of control   ℤℤ, controlled chaotic H = (,  ),   2. This problem is well-know was 
named for the monitoring infecting zone [1] - [3]. 

Let the subset B   is a beginning infected zone with a boundary L and L is a cycle curve 

without an intersection. L is called a boundary zone B.  = (, , B) is a beginning infect front. 
Further, we may applicable the algorithm 1.  

Suppose S(A)  A is a minimal sphere with the center OA = (io,jo)B, 

: A  {+1, 1},  (16) 
be the function that takes each two cells k = (ik,jk) and m = (im,jm) to 

1) (k , m) = +1, if im io > ik  io or jm  jo > jk  jo ; 

2) (k , m) = 1 on the other case. 
S(A) is called a restriction sphere.  
By definition the map (16) is a strategy of a controller [1]-.  
Correctly are the following theorem.  

Theorem 6. See 5. Let a finite ground-set A  ℤℤ is a restriction sphere S(A) is a finite 

ground-set A and  = (V, E) is a finite graph, where the vertex-set V = A and edge-set E = {eB: e 

{(i,j)V: (i-1,j), (i,j-1), (i+1,j), (i,j+1)}}, ℕ() is the inverse function for the algorithm 1 on a 

graph . Then we have 

ℕ() = ( ) ( )E E 
  


 ,  (17) 

where E 
  to be the set of edges (d , r) of  such that dr =1 and E 

  be the remaining edges of , 

here dr =1 if the diedge (d , r) is “ij”,  = eI, here I is a number of the Algorithm 1 iterations and 

 is strategy of controller (16). 

Corollary 6.1. See 9. Suppose No is an iteration number of algorithm 1 on graph ; then No 

 µ(ℕ()).  

Corollary 6.2. The algorithm 1 on ℤℤ has big computability complexity.  

6. Direct Algorithm оf single-center infection on ℤℤ (Algorithm 3) 

Suppose conditions of theorem 6 being satisfied. The subset B   is a beginning infected 

zone with the boundary zone L. Let L  B and the subset A  A/B  ℤℤ are infection-screened 

cells. Infection screened cells are marked the symbol “”, see fig.5. The boundary zone B contains an 
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infection centre OAB. Any cell cB is called active if {c}  L   and the active cells are starting 
points of algorithm 3. The cells  

cij = {(i  0;1 , j  0;1)  (i,j)}A 

are called neighbouring cells of cell (i,j)A. Any cell cA/(B  A) is called a freedom cell (f-cell). 

For any cells c1 = (i,j), c2 = (k,l)A there exists a distance  

d(c1, c2) = 2 2( ) ( )i k j l   . 

Algorithm 3 
(RI) We get L1 = L.  

(Z) An active cell mL is said to be initial if d(m, OA) 
L

 min. Let Cm = 

{m1, m2, m3} be the f-cells, where µ(mi  m) = 2, and m* be the cell of Cm such that m* have 

the maximal number n(m*) of neighbouring active cells. m* stand of the active cell. L1  L1/{m} 

{m*}. If m* not exist, then L1 L1. 

The rule (Z) by repeats µ(L)  1 time in the hour-hand direction.  

If L1  L, then L = L1, we add to A the new f-cell and go to (RI). Finally, if L1 = L, then the 
algorithm 3 is stop. 

 

           
            

     █ █      

            

            

    L   OA     

        █    

  █         
    B L   █   
   █         

    █       

            

            

            

Fig. 5.  
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Example. In Fig.5 the new active cells are marked the sign “█”, the active cells are marked 

the sign “”, and the f-cells are shown as “”. 

Theorem 7. See 9. The algorithm 3 has the compu-

tation complexity O(m2), where m = (L). 

Corollary 7.1. The algorithm 3 is effective to solu-
tion of real problems for computational viral extension. 

Corollary 7.2. Let В = OA = L; then 0.57a

f

n
P

n
  , 

where na is the number of the new active cells and nf is the 
number of the f-cells. Using the algorithm 3 computa-tional 
experiments we obtain na and nf. 

Hypothesis. The number P is a critical probability, 

see (4), of single-center infection on ℤℤ.  

7. Inverse Algorithm оf Single-Center Infection 

Suppose conditions of section 6 being satisfied. Let 
we have В = OA = L of an initial infection. Furthermore, B* 

 is an infected zone before starting inverse algorithm.  

Let Н   / B* is fixed subset of f-cells.  

Theorem 8. Let A  ℤℤ is finite the ground-set, S(A) is a a restriction sphere, and  is func-

tion (16). Further, let  = (V, E) is a finite graph, where the vertex-set V = A and edge-set E = {eB: 

e {(i,j)V: (i-1,j), (i,j-1), (i+1,j), (i,j+1)}}, ℕ() is the inverse function for the Algorithm 3 on a 

graph . Then we have 

ℕ() = ( +1)  ℕ({e})  1  ℕ({e}),  (18) 

where {e} be the graph obtained by deleting an edge e from , {e} be the graph obtained by de-

leting an edge e and then identifying its end points,  = eI, here I is a number of the Algorithm 3 itera-
tions. 

Theorem 9. 

I*  ((A) (H))2,  
where I* is a number of the Algorithm 4 iterations. A is a groundset and H is the subset of all protect-
ed cells. 

Our main result is the following. 

Theorem 10. There exist the algorithm 4 of effective solution of the inverse problems for 
computational viral extension. 

The proof theorems 4-6 are in [7]-[12] and the algorithm 4 listing is in [9]. 

Corollary 10.1. Using Algorithm 4, we get the coordinates: 
OA = (i0 , j0),  (19) 

where OA is an infection center.  

Remark. The coordinates (19) are a dream of antiterrorist organizations.  

 

Fig. 6. S. Grosz. The Passive Conduc-
tor 
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Гритсак-Грёнер В. В., Гритсак-Грёнер Ю. 

Стратегическое управление хаосом и обратные задачи. Часть 2 

Мы продолжаем вводить новые понятия контроля и управления хаосом. Мы вводим также понятие стра-
тегии управления хаотическими структурами. В разделе 2 дан краткий обзор стандартных фактов о кон-
троле хаотиков. В разделе 3 приведены некоторые базисные факты о контроле (управлении) хаотичных 
потоков cо штрафной функцией. В разделе 4 мы снова вводим новые понятия стратегии контроля, кото-
рые позволяют полностью контролировать хаос даже в ситуациях, когда один из контролёров из бригады 
контролёров предательски начинает менять свою стратегию или, более того, появляется один из внешних 
контролёров со своей стратегией. В обоих случаях, наша стратегия не позволяет предателю или террори-
сту (так, естественно называть этих контролёров) получить какую-нибудь выгоду. Далее, в разделе 5, мы 
рассматриваем конкретный случай контроля, когда множество контроля имеет координатную целочис-
ленную сетку Αℤ×ℤ и у нас один пассивный контролёр. Такая задача контроля хаоса, несмотря на 
ограничения, довольно распространена. В другой терминологии она называется задачей мониторинга на 
координатной сетке. Например, к таким задачам относится мониторинг распространения вирусной эпи-
демии или распространения последствий стихийного бедствия или техногенной катастрофы. В разделах 
5–7 мы её полностью алгоритмически решаем. В разделе 5 мы приводим прямой алгоритм её решения. В 
разделе 6 приводится алгоритм решения в случае известного центра распространения хаоса. (Например, 
для распространения нуклидов из Чернобыльской атомной электростанции). В обоих случаях предусмат-
ривается стратегия протии вмешательства предателей и террористов. Наконец в разделе 7 приводится 
алгоритм решения обратной задачи мониторинга, принадлежащий первому автору. Другими словами, 
вычисляются координаты центра распространения хаоса. 

Ключевые слова: хаос, контроль, хаотик, множество 


