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Biological computing theory has its roots in mathematical biology and mathematical
computer sciences. Introduced by V. V. Gritsak-Groener [1, 9] in giving an example of
superpower biological computational creation, which has beginning of new field of computer
sciences. The aim of this article is to describe complex logical interaction between the DNA,
RNA-molecule that is transmitted through the medium of the linear cell automata. We show
(Theorem 1 and Theorem 2) that the interaction’s structure of DNA-RNA is logician’s
equivalent to the structure Linear Cell Automata (g-LCA) and we show that g-LCA is Full
Logical (Theorem 3 and Theorem 5). This article contains the main results: Theorems 6-7
determines the needed and the sufficient conditions of equivalence g-LCA to Universal
Recursive Construct (URC). This article is continuous for articles [10, 11].
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1. Introduction

Biological computing theory has its roots in mathematical biology and mathematical computer
sciences. Introduced by first author (see [1], [9]) in giving an example of superpower biological com-
putational creation, which has beginning of new field of computer sciences. The aim of this article is
to describe complex logical interaction between the DNK, RNK-molecule that is transmitted trough
the medium of the cell automata.

We shall recall briefly the notion of biological computing.

A Linear Cell Automata (g-LCA), when it goes beyond the very elementary level of the Gen-
eral Cell Automata, makes considerable use of the results of DNA-Automata, as we remarked in the
p-3. Let fbe given by

f: {Ala, Cys, . . ., Trp, Tyr} —— Codons. (D)
We have linear cell automata C = (D, f, end, end2), where D is DNK-molecule, f is stand function of
C, end is beginning information and end2 is finishing of information.
Simple directed graph, or simple digraph J is an ordered pair:
3=(V(3),E(9)), B V(3) LI VD), (2)
where V(3) is a nonempty set called the set of vertices of J; E(J) is a set disjoint union from V(3J),
called the set of arrows of 3. Before, if ¢ = <vi,1,>€E(3) = e =<y, > ¢ E(3), vi,»,eV(3). If e =

def def
<y, vy> arrow of 3, v; = 0'e is called the tail (or initial) of e, and v, = J'e are called the spike (or
terminal) of e. A digraph A is an ordered pair

A=(V(A),E(A)), (3)

where E(A)=E(3)) ... UE,(3,) and E(S)), i=[1, n] is arrows of simple digraphs J,=(V(A), E(J))).
Suppose A=(V(A), E(A)) is a digraph. If e = <v;,v,> €E(A), v, is called an outneighbor of v, and v,
inneighbor of v,. e is said to be incident out of v; and incident into v,. fl(v;) (or §"v,) denotes the set of
inneighbors v; of in A. Similarly, st(v;) (or 6'v;) denotes the set of outneighbors v, of in A. An arrow
having the same ends is called a loop of A. A diwalk joining the vertex v, to the vertex v, in a digraph
A is an alternating sequence L™

V1€ V2 V3. .. €y Wit 4)
with e; incident out of v; and incident into v;.;. A directed walk L™ (4) is called a diloop if vi = vy.1. A
digraph A (3) is called a diforest if A not contains a diloop. Moreover, a digraph

A=(V(A),E(N)), (%)
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is called a straightedge if V(A) =[0,1, 2, .. ., n] and E(A) < {(i-1, 1)}, i€[1, n]. Also, a linear digraph
is called a digraph I'=(V, E) such that there exists a surjective map

C:T—A,
where A is a straightedge and a restriction of the map on diwalk L™ is injective map, where L™ is a

subgraph I'. Finally, a vertex noun of veV is called €(v). The others detailed see [5].
LetA=(ay,... a;,...) #J be aset, whose elements will be called codons. We say that triple
Jd= (A, {, U) has cell universe, if there is given an injective map
{{# Ay —> UUL?,

where U is non-empty set, A =(ai, . . ., a;, . . .) # &, and m is maximal arity of codons for A. The set U
is called a vertices cell (v-cell). A cell digraph I is an ordered pair
I'=(V,E),V=A\{#},Ec VIIV (6)

where V is a nonempty set called the set of vertices of I'; E is a subset disjoint union from V, called
the set of arrows of I if the following conditions hold:
(1) VvxeV, (x,x)gE;

(2)  VxyeV,(xy) €E =(y,x)¢E.
def
Before, if € = <v;, v,>€E = e* = <v,, vi>¢E, v;,», € V. If e = <v;, ;> arrow of I, v; = d'¢e is
def
called the initial of e, and v, = Je are called the terminal of e.

Theorem 1. Cell digraph T" of DNK-RNK -Automata is a linear diforest.

The proof’s detailed is given in [6]
Let I' = (V, E) is cell digraph (6), VeV, #eVY ¢V, and D(T') is the set of all directed walk
17( V1, Vae1) = Vi€ V22 Vs, . . €y Vis1, Where vie V™| vy € VY. There is given a map
y: E— (&, ExE).
The set = is called an arrows cell (a-cell). V" and VY are called an input and an output.
Sekstant
CL=(,Z,y, V"V, d (7)
is called 2 -Band Cellular Automata (2CA). Further, the word S = a, a, . . . a; # is induces 2LCA (7), if
a;eV", a,e V¥, ({#} — UUU?, {{a;} — UUU?, Y(a,ai11) €E, y(a,ai) —> (2, ExE). Here, CL
is called 2 -Band Linear Cellular Automata (2LCA).
Without loss of generality it can be assumed that 2LCA make up by the two cell bands, where
DNA is the cell band (DNA-band) and RNA is the arrows cell band (RNA-band). Futhermore, an
information of DNA-band takes to RNA-band under the structure of cell digraph I'.

Theorem 2. 2 -Band Linear Cellular Automata DNK-RNK-Automata is local isomorphic to the Linear
Cellular Automata (LCA), where LCA has N® rules of cell transform and St® cell states, p(N¥®)
< oo and p(St¥) < oo.

The proof is given in [7], [8].

Corollary 2.1. 2LCA DNK-RNK-Automata J is isomorfic to the linear cellular automata g-LCA. Let

NE and N° rules of cell transform of I and g-LCA, St¢ and St° cell states J and g-LCA, then g-
LCA has N® < 2N +1, St® < 2St".

2. Logical Realization of g-LCA J

The formal symbol (fs) of a logical theory are the following:
(a) A ={ay, ap} codon — letters (c-letters).
(b) The logical sign “v ”, which is called the disjunction.

(¢) The logical sign “] ”, which is called the negation.
(d) The logical sign “®”, which is called the distiguition
(e) The logical sign “@”, which is called the replication.
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(f) The specific sign “=", which is called the equation.

(g) The specific sign “C”, which is called the includition.
(h) The specific sign “e”, which is called the belongution.
(i) The specific sign “(”, which is called the left bracket.
(§) The specific sign “)”, which is called the right bracket.

In g-LCA J letters A= (ay, .. ., a;, ...) # D are the codons, where p(A) < 0. M(A) be the free
monoid generated by A. The elements of M(A) are called g-words and are identified with finite se-
quences

S=aja,...a#, (8)
where a;e A, 1=[1,s], #=end or end2. We recall that the length 1(S) of g-words (8) is s. The composi-
tion in M(A) will be written multiplicatively, so that

SloSZ=a1a2...as#blbz...br#,

is the sequence obtained by juxtaposition of Sy =a; a,...a;#and S;=b; b, ... b, #
The 0-words € = & is the idedentity element of the monoid M(A). Without loss of generality it
can be designate that

81OSZ=a1a2...asb1b2...br, (9)
And designate of g-word S that
S=aja...a,.

Theorem 3. g-LCA J is linear cell automata if 30 cell states are:
a) 20 non-empty codons of genetic code;
b) 7 formal symbols;
¢) end-codon, end2-codon, J-cell,

and 8 rules of cell transform of J.
Proof. The proofs of all statements in this theorem, including all lemmas can be found in [6], [8].
Lemma 3.1. Let g-LCA J is contained in the band the word S = S; o SZ o S,, where S; =a; ... a,
S,=b;...b, sg =, ..., D, Vi is equvalence to J-cell. Then there is an J-algorithm of

the processing S; o S}, o S;——> Sy 0 S,.

The Algorithm Scheme. We leave to the words S,, S, /{,} without change. Further we change a cell
@, on by, the cell by on by, . . ., the cell b, on b,, see Fig. 1.

.. s [o , @, [b

L

Fig. 1

9 9 9

The detailed J- algorithms of the processing S; o SZ o S;——> S; o S, can be found in [6].

Lemma 3.2. Let S be a g-word. We shall denote by vS obtained by writing, from left to right, the sign
“v”, the g-word S. Let S; =a; ...a;and S, =b; ... b, be g-words. Then there is an J-al-
gorithm of the processing S;, S, —— Vv(S; o S;), where we shall denote by V(S0 S;), which is
called a disjunctions of S, and S, , is a g-word, see Fig. 2.

L la [ 1. [ Ta [ [. [. Jbo [ [ . [b | |

v

L v [ da [ | [ Ja b | [, ] Jb ) [ |
Fig. 2
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The detailed J- algorithms of the processing S;,S, ——> V(S; o S;) can be found in [6].

Lemma 3.3. Let S = a, . . . a; be a g-word. We shall denote by |(S) obtained by writing, from left to

right, the sign “|”, which is called a negations of S (It is read : not S). Then there is an J-
algorithm of the processing S—— (S), see Fig. 3.

[ 1. [ T Ta [. [. T Ta [ . [. [ T ]

U]

L e Ja b [ b Ja ) [ ] [ ]

Fig. 3

The detailed J- algorithms of the processing S—— |(S) can be found in [6].

Lemma3.4.LetS=a;...a...a...a;beag-word and “a” be a letter. We shall denote by ®,S the

g-word constructed as follows: form the g-word ®S, link each occurrence of a in S to the ®
written on the left of S, and then replace a everywhere it occurs by the sign G, which is called
a distiguitions of S. Then there is an J-algorithm of the processing S —— ©@,(S) =
=a;...H...0...a,see Fig. 4.

(& | . [ [ Ja [. [. | Ja | [. [ Ja |

Jo,

as

ap . . . [ . . . =

Fig. 4

The detailed J- algorithms of the processing S—— ®(a)(S) can be found in [8].

Lemma 3.5. Let S;=a;...a;and S, =Db; ... b, are g-words. We shall denote by =(S;S,) obtained by

writing in left of S;oS; the sign “=", when S, coincindence S,, which is called an equations of
S; to S, (It is read: S; equation to S,), for otherwise it denote =](S;°S,) obtained by writing in

left the signs “=|". Then there is an J-algorithm of the processing
81,82—) = (Slo Sz) or :—l (Slosz), see Flg 5.

= -l ( ap g bl br )
=]
o Ja [ o 1 Ja [ f. . b [ [ . b [ ]
U=
o l=1cTa [T T Ta [b [ [, [ Jb [H [ ]
Fig. 5

The detailed - algorithms of the processing S;,S; —> = (S;o S;) or =](S;°S;) can be found
in [7], [8].

Lemma 3.6. Let S, =a; ...a;and S, =b; ... b, are g-words. We shall denote by C(S;0S,) obtained by

writing in left of S;oS, the sign “C”, when S; is a segment of S,, which is called a includations

of S; to S,. Then there is an J—algorithm of the processing S;,S, ——> C(Si0 S,), see Fig. 6.

[a | [. [ Ja [ [. . b [ [ [. Jb [ ]|
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Uc

Fig.6

The detailed J- algorithms of the processing S;,S, ——> C(Si0 S,) can be found in [7], [8].

Lemma 3.7. Let S=a, . .. a;is g-word and a is a c-letter. We shall denote by €(a-S) obtained by writ-
ing in left of acS the sign “€”, when ais a segment of S, which is called a belongutions of a to

S. Then there is an J-algorithm of the processing a,S — €(acS), see Fig. 7.

1 [ T T Ta [ T. [. Ta [. [ T. Ja [ |
Ue

o o b Te [ Ta Ja [0 [0 [0 Ja ) [0 ]
Fig.7

The detailed J- algorithms of the processing a, S—— €(ac S) can be found in [7], [8].

Corollary 3.1. We have
| N2[ <27,] st¢] < 10. (10)
Theorem 4. A linear cellular automata is universal computation.

Proof can be found in [7, 8].

3. g-LCA Universal Design

By [2] (detailed in [7], [8]), it follows that universal cellular automata is isomorphic g-LCA
universal design. For all genetic information in system

DNR —— RNR —— Protein (11)

we have g-LCA universal design.

9% ¢

The specific signs , “C”, and “€”, of a theory G are called an iferation, and the others are
called a /inguisticotion. With every the iteration is associated a natural number called its weight. A g-

word is said to be of the first genus if it begins with a linguistically sign, or with a “®”, or if it consists
of a c-letters; otherwise it is of the second genus.

Theorem 5. Let in the theory G of LCA is a sequences S; .. S, of g-words which has the following
property: for each g-word S of the sequence, one of the following conditions is satisfied:

(1)  Sisac-letter.

(2)  There are two g-words S; and S, of the second genus, preceding S, such that Sis S; v S,.

(3)  There is g-word S; of the second genus, preceding S, and a c-letter a such that S is
@(a)Sl.

(4)  There is in the sequences a g-word S; of the second genus, preceding S, such that S is
1S1.

(5)  There is an iteration i of weight 2 in G, and two g-words S; and S, of the first genus, pre-
ceding S, such that is i(S;S,).

Then the subsequences Sy ... S;, 1 <n, is a construct of S;.

Proof is in [2].

The g-words of the first genus, which appear in the construct of G, are called g-terms in LCA.
The g-words of the second genus, which appear in the construct of G, are called g-relations in LCA.
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4. Classified Theorem of 2LCA
We are given a map w: A —— N, where the set NV is positive integers. w(a;) is called arity of

the c-letter a;. For each non-null the g-word S = a; a, . . . a;, we put w(S) = iw(ai), and w(e) =0,
i=1

w(#) = 2. w(S) is called the mass of the g-word S. We denote S® the g-word obtained by deleting the
states [ in S with the left shift on the remote places. If S; =S ‘0 S, 0 S”’, the g-word S, is said to be a
segment of S;.
A worm is a sequence S;, i =[1,n], of g-words with the following property: for ¥ g-word S of
sequence, one of the following two conditions is satisfied:
(1)  Sisasign of mass 0.
(2) 3 m(m<n)g-words S%, ..., S™ in the sequence such that it be founds in the worm S;
before S, and a sign ¢ mass m such that S=¢ S*...S™.
A snake is a g-word S of the following two conditions is satisfied:
3)  I(S)=w(S) + 1, where I(S) is length of the g-word S.
(4)  For V proper a segments S; of S, w(S;) > I(S)).

Theorem 6. If a g-word S is an iteration and a linguisticotion in the theory G, then S is a snake.
Proof. The proofs of all statements in this theorem, including all lemmas can be found in [2], [8].

Lemma 6.1. If Sq, . . ., S, are m a worm and if ¢ is a sign of mass m, then the g-word S = ¢S, ... Sp,
is a worm.

Lemma 6.2. A g-word is a worm iff it is a snake.

Lemma 6.3. V a worm may be mpeacraeieno g-LCA in exactly one way in the form ¢S; . .. Sp,
where Sy, . . ., Sy, are worms and ¢ has mass m.

Theorem 7. Let a g-word S be a snake.
For S to be a g-term iff that one of the following conditions be satisfied:
(o) S consists of a single c-letter.

(B) S begins with “®”, S¥ is identical with the iteration ¢S; . . . Sy, and its are g-
relations.

(%) S begins with a linguistication sign “0”, S® is identical with the iteration 0S; . . .
Sm and its are g-terms.
For S to be a g-relation iff that one of the following conditions be satisfied:

(8) S begins with a “v” or a “|”, S¥ is identical with the iteration vS; ... Sy, (or |S; .
.. Sp) and its are g-relations.

(¢) S begins with the iteration sign “c”, S® is identical with the iteration 6S; . . . S,
and its are g-terms.
Vv Sj are a g-words.

Proof. The Lemma 7.1 — 7.4 show that the conditions of theorem 7 are sufficient.

Lemma 7.1. If S is a g-relation in the theory G of g-LCA, then |S is g-relation in G.

Proof in [2] and [8].

Lemma 7.2. If S; and S; are g-relations in the theory G of g-LCA, then v S;S, is a g-relation in G.

Proof in [2] and [8].

Lemma 7.3. If S is a g-relation in the theory G of g-LCA, and if a is a c-letter, then @4(S) is a g-term
in G.

Proof in [2] and [8].
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Lemma 7.4.If S, . . ., S, are g-terms in the theory G of g-LCA, and if “c” is an iteration of mass m
in G, thenc S; ... Sy, is the g-relation in G.

Proofin [2] and [8].
Lemma 7.5. The conditions (a)-(¢) in theorem 7 are necessary conditions.

Then proof is trivial.

5. Hypothesis WILLIAM

Hypothesis WILLIAM. Is it true that the mechanism of transfer genetic information in system (10) is
the classical recursive process?

Proposition. Hypothesis WILLIAM is said to be true if be realized the conditions theorems 6-7.
This will be the object of another paper.
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Cmamvs nocmynuna 6 pedaxyuio 12.01.2011 .

I'pumcax-I'pénep B.B., [ pumcax-I pénep FO., [lempoy M.
buoxkomnbroreps! 3

Buonorndeckas Teopus BEIYUCICHHN MMEET CBOM KOPHH B MaTeMAaTHUECKOW OMOIIOTUM W MaTeMaTHYECKOU KH-
Oepuetnke. Haiimenusiii u mpomemoHcTpupoBanHbed B [1, 9] V. V. Gritsak-Groener mpumep CynepMOITHBIX
OMOJIOTUYECKUX BBIYUCIUTENBFHBIX BO3MOXKHOCTEH OTKPHIBAET HOBYIO 00JAcTh KOMITBIOTEpHOW Hayku. Llems
sToi crateu — omnmcanue aercteus JJHK u PHK-monexyn mocpencTBoM AEWCTBUS TMHEWHBIX KIETOYHBIX aB-
TOoMaToB. A Tak Kak B [4, 7] OblIa modydeHa MoJHAs KIaCCU(HUKAIMA JTUHEHHBIX KJICTOYHBIX aBTOMATOB, MBI
NoJydaeM MOJIHYH0 Kiaccudukaimio oruueckoro B3anumoaeictsus JJHK, PHK-monekyn. [Tokazano (Teopema 1
u Teopema 2), uto ctpykrypa B3aumozeicteust JJHK-PHK norndecku skBuBajgeHTHa CTPYKTYpe CHEIHATIBHBIX
Jluneiinbix Knerounsix ABromaroB (g-LCA) n uto g-LCA ectb Jlornuecku Ilonnsie (Teopema 3 and Teopema T
5). OcHOBHOI1 pe3ynbTaT cTathu: Teopembl 6—7 0 ToM, uTo g-LCA ynoBIeTBOpsSEeT HEOOXOAMMBIM U JJOCTATOY-
HBIM ycIIoBUSM Ju1s1 Y HuBepcanbHoit PexypenBHoi Konerpykuuu (URC). Cratest — npomoinkenue [10, 11].
Knroueswvie cnosa: koMIploTep, reHOM, KIIETOYHBIA aBTOMar, MaTpous, kareropus, JHK, PHK.

Pedepar
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”Kommap” cOBpeMEHHONH KOMITBIOTEPHOW TEXHHUKU COCTOMT B TOM, YTO, HECMOTPS Ha YBEJIWYCHHE €€ OBICTPO-
JEWCTBHSI, HEJIb3sl TapaHTUPOBAHO B MpHeMIieMoe BpeMs peuatse NP-nosHble u Oosnee cioxuble 3aaaun. (K NP-
TIOJIHBIM 3aJja4yaM TpUHAJJIekKAT Jake Takue MpOoCTeiIre 3a1auu, Kak 3a/lada KOMMUBOSKEpa, JUHEWHAs: OJTHO-
MepHas 3aj7a4a ONTHMHU3AIUH — OJTHOMEPHBIN «PIOK3aK» — U 1M0100HbIe). Bosiee Toro, kak ObUIO BIEpPBBIC MOKA-
3aHO B [1] u [3] 3agauu cunThiBaHUS U peanu3anuu rererudeckoit napopmarmu B JJHK, PHK B3anmopeticTein
€CTh, Takke NP-TIOJTHO# BBEIUUCIUTENHHON 3a1aueil. 3HAYUT, 000N KUBOW OpraHu3M 001aacT BIYUCIUTEIb-
HBIM TIPOIIECCOPOM, KOTOPEIA HECPABHUMO MPEBOCXOIUT MO CKOPOCTH BHIYUCIICHHIA JTFOO0H CBEPXMOIIHBIH CO-
BPEMEHHBIN U Oy Iy KOMITBIOTEp (JIEKTPOHHYIO pealn3aIiio KIIACCHUECKOW PEKYPCHBHOU TEOPHN).

Eme B 1929 romy IxoH ¢hon HeliMaH mokasai, 9To IIOCKUN KICTOYHBIM aBTOMAT MOXKET OBITh HE MEHEE MOIII-
HBIM TI0 BBIYUCIIUTENIFHOW CKOPOCTH, YeM JI000I KOMIBIOTEp, pealu3yrOIuil 000N BapHaHT PEeKypCHBHOM
Teopuu, Hanpumep, Mamuny Ilocra.

B [1] u Gonee moapo6HO B [7], ObuTa HaHa mosHas Kiaccu(UKaIys KOHSYHBIX JTUHEHHBIX KIETOUYHBIX aBTOMa-
ToB. B Hactosmiel padote, mokasano, uto JJHK, PHK-B3aumoseiicTBrue 3KBUBaJICHTHO, HEKOTOPOMY CIICI[HAIIh-
HOMY JIMHEHHOMY KiieTouHoMy aBToMaTy g-LCA (He Oosiee 27 COCTOsSHUI KIeTOK U He Oosiee 10 BBIYMCIUTEb-
HBIX CTPHUHTOB). TeM cambIM, IpelaraeTcs MpoeKT OMOKOMITBIOTEPA, KOTOPBIH 103BoJIsieT peuats NP-moHbie
3amauyd. MBI HaJieeMcs, YTO MOCIe Hallel cTaThu mpuoam3uTces Kouel «Kommapay coOBpeMEHHOW KOMIBIOTEP-
HOM TEXHUKHU.
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