Synergetics and Theory of Chaos

Gritsak von Groener V.V., Gritsak-Groener J., Petrou M. BIOCOMPUTERS 3

University of Georgia, Georgia, USA; Laboratory of HRIT Corporation, Switzerland, USA, UK Imperial College, University of London; QuVIET
e-mail: v_hrit1000000@yahoo.com

Biological computing theory has its roots in mathematical biology and mathematical computer sciences. Introduced by V. V. Gritsak-Groener [1, 9] in giving an example of superpower biological computational creation, which has beginning of new field of computer sciences. The aim of this article is to describe complex logical interaction between the DNA, RNA-molecule that is transmitted through the medium of the linear cell automata. We show (Theorem 1 and Theorem 2) that the interaction's structure of DNA-RNA is logician's equivalent to the structure Linear Cell Automata (g-LCA) and we show that g-LCA is Full Logical (Theorem 3 and Theorem 5). This article contains the main results: Theorems 6-7 determines the needed and the sufficient conditions of equivalence g-LCA to Universal Recursive Construct (URC). This article is continuous for articles [10, 11].

Keywords: computer, genome, cellular automata, matroid, category, DNA, RNA.

1. Introduction

Biological computing theory has its roots in mathematical biology and mathematical computer sciences. Introduced by first author (see [1], [9]) in giving an example of superpower biological computational creation, which has beginning of new field of computer sciences. The aim of this article is to describe complex logical interaction between the DNK, RNK-molecule that is transmitted trough the medium of the cell automata.

We shall recall briefly the notion of biological computing.
A Linear Cell Automata (g-LCA), when it goes beyond the very elementary level of the General Cell Automata, makes considerable use of the results of DNA-Automata, as we remarked in the p.3. Let f be given by

$$
\begin{equation*}
\text { f: }\{\text { Ala, Cys, . . ., Trp, Tyr }\} \longrightarrow \text { Codons. } \tag{1}
\end{equation*}
$$

We have linear cell automata $\mathrm{C}=(\mathrm{D}, \mathrm{f}$, end, end2), where D is DNK -molecule, f is stand function of C, end is beginning information and end 2 is finishing of information.

Simple directed graph, or simple digraph \mathfrak{J} is an ordered pair:

$$
\begin{equation*}
\mathfrak{I}=(\mathrm{V}(\mathfrak{I}), \mathrm{E}(\mathfrak{I})), \mathrm{E}(\mathfrak{I}) \subseteq \mathrm{V}(\mathfrak{I}) \amalg \mathrm{V}(\mathfrak{I}), \tag{2}
\end{equation*}
$$

where $\mathrm{V}(\mathfrak{J})$ is a nonempty set called the set of vertices of $\mathfrak{I} ; \mathrm{E}(\mathfrak{I})$ is a set disjoint union from $\mathrm{V}(\mathfrak{J})$, called the set of arrows of \mathfrak{I}. Before, if $\mathrm{e}=<v_{1}, v_{2}>\in \mathrm{E}(\mathfrak{I}) \Rightarrow \mathrm{e}^{\#}=<v_{2}, v_{1}>\notin \mathrm{E}(\mathfrak{I}), v_{1}, v_{2} \in \mathrm{~V}(\mathfrak{I})$. If $\mathrm{e}=$ $\left\langle v_{1}, v_{2}\right\rangle$ arrow of $\mathfrak{J}, v_{1} \stackrel{\text { def }}{=} \partial^{+}$e is called the tail (or initial) of e, and $v_{2} \stackrel{\text { def }}{=} \partial$ e are called the spike (or terminal) of e. A digraph Δ is an ordered pair

$$
\begin{equation*}
\Delta=(\mathrm{V}(\Delta), \mathrm{E}(\Delta)) \tag{3}
\end{equation*}
$$

where $\mathrm{E}(\Delta)=\mathrm{E}_{1}\left(\mathfrak{I}_{1}\right) \cup \ldots \cup \mathrm{E}_{n}\left(\mathfrak{I}_{\mathrm{n}}\right)$ and $\mathrm{E}_{i}\left(\mathfrak{I}_{\mathrm{i}}\right), i=[1, n]$ is arrows of simple digraphs $\mathfrak{I}_{i}=\left(\mathrm{V}(\Delta), \mathrm{E}_{i}\left(\mathfrak{I}_{\mathrm{i}}\right)\right)$. Suppose $\Delta=(\mathrm{V}(\Delta), \mathrm{E}(\Delta))$ is a digraph. If $\mathrm{e}=<v_{1}, v_{2}>\in \mathrm{E}(\Delta), v_{2}$ is called an outneighbor of v_{1}, and v_{1} inneighbor of v_{2}. e is said to be incident out of v_{1} and incident into $v_{2} . \mathrm{fl}\left(v_{1}\right)$ (or $\delta^{+} v_{1}$) denotes the set of inneighbors v_{1} of in Δ. Similarly, $\operatorname{st}\left(v_{1}\right)$ (or $\delta^{-} v_{1}$) denotes the set of outneighbors v_{1} of in Δ. An arrow having the same ends is called a loop of Δ. A diwalk joining the vertex v_{1} to the vertex $v_{\mathrm{n}+1}$ in a digraph Δ is an alternating sequence L^{\rightarrow} :

$$
\begin{equation*}
v_{1} \mathrm{e}_{1} v_{2} \mathrm{e}_{2} v_{3} \ldots \mathrm{e}_{\mathrm{n}} v_{\mathrm{n}+1} \tag{4}
\end{equation*}
$$

with e_{i} incident out of v_{i} and incident into $v_{\mathrm{i}+1}$. A directed walk $\mathrm{L}^{\rightarrow}(4)$ is called a diloop if $v_{1}=v_{\mathrm{n}+1}$. A digraph Δ (3) is called a diforest if Δ not contains a diloop. Moreover, a digraph

$$
\begin{equation*}
\Lambda=(\mathrm{V}(\Lambda), \mathrm{E}(\Lambda)) \tag{5}
\end{equation*}
$$

is called a straightedge if $\mathrm{V}(\Lambda)=[0,1,2, \ldots, \mathrm{n}]$ and $\mathrm{E}(\Lambda) \subseteq\{(\mathrm{i}-1, \mathrm{i})\}, \mathrm{i} \in[1, \mathrm{n}]$. Also, a linear digraph is called a digraph $\Gamma=(\mathrm{V}, \mathrm{E})$ such that there exists a surjective map

$$
\mathfrak{C}: \Gamma \longrightarrow \Lambda,
$$

where Λ is a straightedge and a restriction of the map on diwalk L^{\rightarrow} is injective map, where L^{\rightarrow} is a subgraph Γ. Finally, a vertex noun of $v \in \mathrm{~V}$ is called $\mathfrak{C}(v)$. The others detailed see [5].

Let $\mathrm{A}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}}, \ldots\right) \neq \varnothing$ be a set, whose elements will be called codons. We say that triple $J=(\mathrm{A}, \zeta, \mathrm{U})$ has cell universe, if there is given an injective map

$$
\zeta:\{\#, \mathrm{~A}\} \longrightarrow \mathrm{U} \cup \mathrm{U}^{2},
$$

where U is non-empty set, $A=\left(a_{1}, \ldots, a_{i}, \ldots\right) \neq \varnothing$, and m is maximal arity of codons for A. The set U is called a vertices cell (v -cell). A cell digraph Γ is an ordered pair

$$
\begin{equation*}
\Gamma=(\mathrm{V}, \mathrm{E}), \mathrm{V}=\mathrm{A} \backslash\{\#\}, \mathrm{E} \subset \mathrm{~V} \mathrm{~V} \tag{6}
\end{equation*}
$$

where V is a nonempty set called the set of vertices of Γ; E is a subset disjoint union from V , called the set of arrows of Γ if the following conditions hold:
(1) $\forall \mathrm{x} \in \mathrm{V},(\mathrm{x}, \mathrm{x}) \notin \mathrm{E}$;
(2) $\forall x, y \in \mathrm{~V},(\mathrm{x}, \mathrm{y}) \in \mathbf{E} \Rightarrow(\mathrm{y}, \mathrm{x}) \notin \mathrm{E}$.

Before, if $\mathrm{e}=\left\langle v_{1}, v_{2}\right\rangle \in \mathrm{E} \Rightarrow \mathrm{e}^{*}=\left\langle v_{2}, v_{1}>\notin \mathrm{E}, v_{1}, v_{2} \in \mathrm{~V}\right.$. If $\mathrm{e}=\left\langle v_{1}, v_{2}\right\rangle$ arrow of $\Gamma, v_{1} \xlongequal{\text { def }} \partial^{+} \mathrm{e}$ is def
called the initial of e , and $v_{2} \stackrel{\text { de }}{=} \partial \mathrm{e}$ are called the terminal of e .
Theorem 1. Cell digraph Γ of DNK-RNK -Automata is a linear diforest.
The proof's detailed is given in [6]
Let $\Gamma=(\mathrm{V}, \mathrm{E})$ is cell digraph (6), $\mathrm{V}^{\mathrm{h}} \subseteq \mathrm{V}, \# \in \mathrm{~V}^{\mathrm{y}} \subseteq \mathrm{V}$, and $\mathrm{D}(\Gamma)$ is the set of all directed walk $\xrightarrow{\rightarrow}\left(v_{1}, v_{n+1}\right)=v_{1} \mathrm{e}_{1} v_{2} \mathrm{e}_{2} v_{3} \ldots \mathrm{e}_{\mathrm{n}} v_{\mathrm{n}+1}$, where $v_{1} \in \mathrm{~V}^{\mathrm{h}}, v_{\mathrm{n}+1} \in \mathrm{~V}^{y}$. There is given a map

$$
\psi: \mathrm{E} \longrightarrow(\Xi, \Xi \times \Xi) .
$$

The set Ξ is called an arrows cell (a-cell). V^{h} and V^{y} are called an input and an output. Sekstant

$$
\begin{equation*}
\mathrm{CL}=\left(\Gamma, \Xi, \psi, \mathrm{V}^{\mathrm{h}}, \mathrm{~V}^{\mathrm{y}}, \mathrm{~d}\right) \tag{7}
\end{equation*}
$$

is called 2 -Band Cellular Automata (2CA). Further, the word $S=a_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{s}} \#$ is induces 2LCA (7), if $\mathrm{a}_{1} \in \mathrm{~V}^{\mathrm{h}}, \mathrm{a}_{\mathrm{s}} \in \mathrm{V}^{\mathrm{y}}, \zeta\{\#\} \longrightarrow U \cup \mathrm{U}^{2}, \zeta\left\{\mathrm{a}_{\mathrm{i}}\right\} \longrightarrow \mathrm{U} \cup \mathrm{U}^{2}, \forall\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}+1}\right) \in \mathrm{E}, \psi\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}+1}\right) \longrightarrow(\Xi, \Xi \times \Xi)$. Here, CL is called 2 -Band Linear Cellular Automata (2LCA).

Without loss of generality it can be assumed that 2LCA make up by the two cell bands, where DNA is the cell band (DNA-band) and RNA is the arrows cell band (RNA-band). Futhermore, an information of DNA-band takes to RNA-band under the structure of cell digraph Γ.
Theorem 2. 2 -Band Linear Cellular Automata DNK-RNK-Automata is local isomorphic to the Linear Cellular Automata (LCA), where LCA has N^{g} rules of cell transform and St^{g} cell states, $\mu\left(\mathrm{N}^{g}\right)$ $<\infty$ and $\mu\left(\mathrm{St}^{\mathrm{g}}\right)<\infty$.
The proof is given in [7], [8].
Corollary 2.1. 2LCA DNK-RNK-Automata \mathfrak{I} is isomorfic to the linear cellular automata g-LCA. Let N^{g} and N^{0} rules of cell transform of \mathfrak{J} and g-LCA, St^{g} and St^{0} cell states \mathfrak{J} and g-LCA, then gLCA has $\mathrm{N}^{\mathrm{g}} \leq 2 \mathrm{~N}^{0}+1, \mathrm{St}^{\mathrm{g}} \leq 2 \mathrm{St}^{0}$.

2. Logical Realization of g-LCA J

The formal symbol ($f s$) of a logical theory are the following:
(a) $\mathrm{A}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\}$ codon - letters (c-letters).
(b) The logical sign " \vee ", which is called the disjunction.
(c) The logical sign " 7 ", which is called the negation.
(d) The logical sign "○", which is called the distiguition
(e) The logical sign " \square ", which is called the replication.
(f) The specific sign " $=$ ", which is called the equation.
(g) The specific sign " \subset ", which is called the includition.
(h) The specific sign " \in ", which is called the belongution.
(i) The specific sign "(", which is called the left bracket.
(j) The specific sign ")", which is called the right bracket.

In g-LCA \mathfrak{J} letters $A=\left(a_{1}, \ldots, a_{i}, \ldots\right) \neq \varnothing$ are the codons, where $\mu(A)<\infty . M(A)$ be the free monoid generated by A . The elements of $\mathrm{M}(\mathrm{A})$ are called g-words and are identified with finite sequences

$$
\begin{equation*}
\mathrm{S}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{s}} \# \tag{8}
\end{equation*}
$$

where $a_{i} \in A, i=[1, s], \#=$ end or end2. We recall that the length $1(S)$ of g-words (8) is s. The composition in $\mathrm{M}(\mathrm{A})$ will be written multiplicatively, so that

$$
S_{1} \circ S_{2}=a_{1} a_{2} \ldots a_{s} \# b_{1} b_{2} \ldots b_{r} \#
$$

is the sequence obtained by juxtaposition of $S_{1}=a_{1} a_{2} \ldots a_{s} \#$ and $S_{2}=b_{1} b_{2} \ldots b_{r} \#$.
The 0 -words $\varepsilon=\varnothing$ is the idedentity element of the monoid $\mathrm{M}(\mathrm{A})$. Without loss of generality it can be designate that

$$
\begin{equation*}
S_{1} \circ S_{2}=a_{1} a_{2} \ldots a_{s} b_{1} b_{2} \ldots b_{r} \tag{9}
\end{equation*}
$$

And designate of g-word S that

$$
\mathrm{S}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{s}}
$$

Theorem 3. g-LCA \mathfrak{J} is linear cell automata if 30 cell states are:
a) 20 non-empty codons of genetic code;
b) 7 formal symbols;
c) end-codon, end2-codon, \varnothing-cell,
and 8 rules of cell transform of \mathfrak{J}.
Proof. The proofs of all statements in this theorem, including all lemmas can be found in [6], [8].
Lemma 3.1. Let g-LCA \mathfrak{J} is contained in the band the word $S=S_{1} \circ S_{\diamond}^{n} \circ S_{2}$, where $S_{1}=a_{1} \ldots a_{s}$, $\mathrm{S}_{2}=\mathrm{b}_{1} \ldots \mathrm{~b}_{\mathrm{r}}, \mathrm{S}_{\diamond}^{n}=\varnothing_{1}, \ldots, \varnothing_{\mathrm{n}}, \forall \varnothing_{\mathrm{i}}$ is equvalence to \varnothing-cell. Then there is an \mathfrak{J}-algorithm of the processing $\mathrm{S}_{1} \circ \mathrm{~S}_{\diamond}^{n} \circ \mathrm{~S}_{2} \longrightarrow \mathrm{~S}_{1} \circ \mathrm{~S}_{2}$.

The Algorithm Scheme. We leave to the words $S_{1}, S_{2} /\left\{\varnothing_{n}\right\}$ without change. Further we change a cell \varnothing_{n} on b_{1}, the cell b_{1} on b_{2}, \ldots, the cell $\mathrm{b}_{\mathrm{r}-1}$ on b_{r}, see Fig. 1 .

a_{1}	,	,	.	a_{s}	\varnothing_{1}	,	,	,	\varnothing_{n}	b_{1}	,	,	,	$\mathrm{~b}_{\mathrm{r}}$
\downarrow														
 , , a_{1} , . , a_{s} b_{1} . ., , $\mathrm{~b}_{\mathrm{r}}$,														

Fig. 1
The detailed \mathfrak{J} - algorithms of the processing $S_{1} \circ S_{\diamond}^{n} \circ S_{2} \longrightarrow S_{1} \circ S_{2}$ can be found in [6].
Lemma 3.2. Let S be a g-word. We shall denote by $\vee S$ obtained by writing, from left to right, the sign " v ", the g-word S. Let $S_{1}=a_{1} \ldots a_{s}$ and $S_{2}=b_{1} \ldots b_{r}$ be g-words. Then there is an \mathfrak{J}-algorithm of the processing $S_{1}, S_{2} \longrightarrow \vee\left(S_{1} \circ S_{2}\right)$, where we shall denote by $\vee\left(S_{1} \circ S_{2}\right)$, which is called a disjunctions of S_{1} and S_{2}, is a g-word, see Fig. 2.

.	a_{1}	.	.	.	a_{s}	.	.	.	b_{1}	.	.	.	$\mathrm{~b}_{\mathrm{r}}$.
\Downarrow														
\downarrow														

Fig. 2

The detailed \mathfrak{I} - algorithms of the processing $S_{1}, S_{2} \longrightarrow \vee\left(S_{1} \circ S_{2}\right)$ can be found in [6].
Lemma 3.3. Let $S=a_{1} \ldots a_{s}$ be a g-word. We shall denote by $\rceil(S)$ obtained by writing, from left to right, the sign " 7 ", which is called a negations of S (It is read : not S). Then there is an \mathfrak{J} algorithm of the processing $S \longrightarrow\rceil$ (S), see Fig. 3.

Fig. 3
The detailed \mathfrak{I} - algorithms of the processing $S \longrightarrow\rceil(S)$ can be found in [6].
Lemma 3.4. Let $S=a_{1} \ldots a \ldots a \ldots a_{s}$ be a g - word and " a " be a letter. We shall denote by $\odot_{a} S$ the g-word constructed as follows: form the g-word $\odot S$, link each occurrence of a in S to the \odot written on the left of S, and then replace a everywhere it occurs by the sign \square, which is called a distiguitions of S . Then there is an \mathfrak{J}-algorithm of the processing $\mathrm{S} \longrightarrow \odot_{\mathrm{a}}(\mathrm{S})=$ $=\mathrm{a}_{1} \ldots \square \ldots$. . . . a_{s}, see Fig. 4.

.	.	a_{1}	.	.	.	a	.	.	.	a	.	.	.	a_{s}
$\Downarrow_{\odot_{\mathrm{a}}}$														
.	.	a_{1}	\cdot	\cdot	.	\square	\cdot	\cdot	.	\square	.	.	.	a_{s}

Fig. 4

The detailed \mathfrak{J} - algorithms of the processing $\mathrm{S} \longrightarrow \odot(\mathrm{a})(\mathrm{S})$ can be found in [8].
Lemma 3.5. Let $S_{1}=a_{1} \ldots a_{s}$ and $S_{2}=b_{1} \ldots b_{r}$ are g-words. We shall denote by $=\left(S_{1} \circ S_{2}\right)$ obtained by writing in left of $S_{1} \circ S_{2}$ the sign " $=$ ", when S_{1} coincindence S_{2}, which is called an equations of S_{1} to S_{2} (It is read: S_{1} equation to S_{2}), for otherwise it denote $\left.=\right\rceil\left(S_{1} \circ S_{2}\right)$ obtained by writing in left the signs " $=\rceil$ ". Then there is an \mathfrak{J}-algorithm of the processing $\mathrm{S}_{1}, \mathrm{~S}_{2} \longrightarrow=\left(\mathrm{S}_{1} \circ \mathrm{~S}_{2}\right)$ or $\left.=\right\rceil\left(\mathrm{S}_{1} \circ \mathrm{~S}_{2}\right)$, see Fig. 5.

Fig. 5
The detailed \mathfrak{I} - algorithms of the processing $S_{1}, S_{2} \longrightarrow=\left(S_{1} \circ S_{2}\right)$ or $\left.=\right\rceil\left(S_{1} \circ S_{2}\right)$ can be found in [7], [8].

Lemma 3.6. Let $S_{1}=a_{1} \ldots a_{s}$ and $S_{2}=b_{1} \ldots b_{r}$ are g-words. We shall denote by $\subset\left(S_{1} \circ S_{2}\right)$ obtained by writing in left of $S_{1} \circ S_{2}$ the sign " \subset ", when S_{1} is a segment of S_{2}, which is called a includations of S_{1} to S_{2}. Then there is an \mathfrak{J}-algorithm of the processing $S_{1}, S_{2} \longrightarrow \subset\left(S_{1} \circ S_{2}\right)$, see Fig. 6 .

.	a_{1}	.	.	.	a_{s}	.	.	.	b_{1}	.	.	.	$\mathrm{~b}_{\mathrm{r}}$.

$\Downarrow \subset \subset$

.	\subset	$($	a_{1}	.	.	.	a_{s}	b_{1}	.	.,	.	$\mathrm{~b}_{\mathrm{r}}$	$)$.

Fig. 6

The detailed \mathfrak{I} - algorithms of the processing $\mathrm{S}_{1}, \mathrm{~S}_{2} \longrightarrow \subset\left(\mathrm{~S}_{1} \circ \mathrm{~S}_{2}\right)$ can be found in [7], [8].
Lemma 3.7. Let $S=a_{1} \ldots a_{\mathrm{s}}$ is g-word and a is a c-letter. We shall denote by $\in(a \circ S)$ obtained by writing in left of aoS the sign " ϵ ", when a is a segment of S, which is called a belongutions of a to S. Then there is an \mathfrak{I}-algorithm of the processing a,S $\longrightarrow \in(a \circ S)$, see Fig. 7 .

	.		.	a		.	.	a_{1}		.	$\mathrm{a}_{\text {s }}$	
\Downarrow_{\in}												
	.	.	.	ϵ	(a	a_{1}		.	$\mathrm{a}_{\text {s }}$)	

Fig. 7
The detailed \mathfrak{I} - algorithms of the processing a, $\mathrm{S} \longrightarrow \in(\mathrm{a} \circ \mathrm{S})$ can be found in [7], [8].
Corollary 3.1. We have

$$
\begin{equation*}
\left|\mathrm{N}^{\mathrm{g}}\right| \leq 27,\left|\mathrm{St}^{\mathrm{g}}\right| \leq 10 . \tag{10}
\end{equation*}
$$

Theorem 4. A linear cellular automata is universal computation.
Proof can be found in $[7,8]$.

3. g-LCA Universal Design

By [2] (detailed in [7], [8]), it follows that universal cellular automata is isomorphic g-LCA universal design. For all genetic information in system

we have g-LCA universal design.
The specific signs " $=$ ", " \subset ", and " \in ", of a theory G are called an iteration, and the others are called a linguisticotion. With every the iteration is associated a natural number called its weight. A gword is said to be of the first genus if it begins with a linguistically sign, or with a " \bigcirc ", or if it consists of a c-letters; otherwise it is of the second genus.
Theorem 5. Let in the theory G of LCA is a sequences $S_{1} \ldots S_{n}$ of g-words which has the following property: for each g-word S of the sequence, one of the following conditions is satisfied:
(1) S is a c-letter.
(2) There are two g-words S_{1} and S_{2} of the second genus, preceding S, such that S is $S_{1} \vee S_{2}$.
(3) There is g-word S_{1} of the second genus, preceding S, and a c-letter a such that S is $\odot(a) S_{1}$.
(4) There is in the sequences a g-word S_{1} of the second genus, preceding S, such that S is $1 S_{1}$.
(5) There is an iteration i of weight 2 in G, and two g-words S_{1} and S_{2} of the first genus, preceding S , such that is $\mathrm{i}\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right)$.
Then the subsequences $\mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{i}}, \mathrm{i} \leq \mathrm{n}$, is a construct of S_{i}.
Proof is in [2].
The g-words of the first genus, which appear in the construct of G , are called g -terms in LCA. The g-words of the second genus, which appear in the construct of G , are called g-relations in LCA.

4. Classified Theorem of 2LCA

We are given a map w: A $\longrightarrow N$, where the set N is positive integers. $\mathrm{w}\left(\mathrm{a}_{\mathrm{i}}\right)$ is called arity of the c-letter a_{i}. For each non-null the g-word $\mathrm{S}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{s}}$, we put $\mathrm{w}(\mathrm{S})=\sum_{i=1}^{s} w\left(a_{i}\right)$, and $\mathrm{w}(\varepsilon)=0$, $\mathrm{w}(\#)=2 . \mathrm{w}(\mathrm{S})$ is called the mass of the g-word S. We denote S - the g-word obtained by deleting the states \square in S with the left shift on the remote places. If $S_{1}=S ‘ \circ S_{2} \circ S$ ', the g-word S_{2} is said to be a segment of S_{1}.

A worm is a sequence $S_{i}, i=[1, n]$, of g-words with the following property: for \forall g-word S of sequence, one of the following two conditions is satisfied:
(1) S is a sign of mass 0 .
(2) $\exists \mathrm{m}(\mathrm{m}<\mathrm{n})$ g-words S^{1}, \ldots, S^{m} in the sequence such that it be founds in the worm S_{i} before S, and a sign φ mass m such that $S=\varphi S^{1} \ldots S^{m}$.
A snake is a g-word S of the following two conditions is satisfied:
(3) $\quad \mathrm{l}(\mathrm{S})=\mathrm{w}(\mathrm{S})+1$, where $\mathrm{l}(\mathrm{S})$ is length of the g-word S .
(4) For \forall proper a segments S_{1} of $S, w\left(S_{1}\right) \geq I\left(S_{1}\right)$.

Theorem 6. If a g-word S is an iteration and a linguisticotion in the theory G, then S is a snake.
Proof. The proofs of all statements in this theorem, including all lemmas can be found in [2], [8].
Lemma 6.1. If S_{1}, \ldots, S_{m} are m a worm and if φ is a sign of mass m, then the g-word $S=\varphi S_{1} \ldots S_{m}$ is a worm.
Lemma 6.2. A g-word is a worm iff it is a snake.
Lemma 6.3. \forall a worm may be представлено g-LCA in exactly one way in the form $\varphi S_{1} \ldots S_{m}$, where S_{1}, \ldots, S_{m} are worms and φ has mass m.

Theorem 7. Let a g-word S be a snake.
For S to be a g-term iff that one of the following conditions be satisfied:
$(\alpha) S$ consists of a single c-letter.
(β) S begins with " \odot ", S is identical with the iteration $\varphi S_{1} \ldots S_{m}$ and its are grelations.
$(\chi) S$ begins with a linguistication sign " θ ", $S \square$ is identical with the iteration $\theta S_{1} \ldots$ S_{m} and its are g-terms.
For S to be a g-relation iff that one of the following conditions be satisfied:
(δ) S begins with a " \vee " or a " \rceil ", S \square is identical with the iteration $\vee S_{1} \ldots S_{m}$ (or $\rceil S_{1}$. $\ldots S_{m}$) and its are g-relations.
$(\varepsilon) S$ begins with the iteration sign " σ ", $S \square$ is identical with the iteration $\sigma S_{1} \ldots S_{m}$ and its are g-terms.
$\forall \mathrm{S}_{\mathrm{i}}$ are a g-words.
Proof. The Lemma $7.1-7.4$ show that the conditions of theorem 7 are sufficient.
Lemma 7.1. If S is a g-relation in the theory G of g-LCA, then $\rceil S$ is g-relation in G.
Proof in [2] and [8].
Lemma 7.2. If S_{1} and S_{2} are g-relations in the theory G of g-LCA, then $\vee S_{1} S_{2}$ is a g-relation in G.
Proof in [2] and [8].
Lemma 7.3. If S is a g-relation in the theory G of g-LCA, and if a is a c-letter, then $\odot_{a}(S)$ is a g-term in G.

Proof in [2] and [8].

Lemma 7.4. If S_{1}, \ldots, S_{m} are g-terms in the theory G of g-LCA, and if " σ " is an iteration of mass m in G, then $\sigma S_{1} \ldots S_{m}$ is the g-relation in G.

Proof in [2] and [8].
Lemma 7.5. The conditions $(\alpha)-(\varepsilon)$ in theorem 7 are necessary conditions. Then proof is trivial.

5. Hypothesis WILLIAM

Hypothesis WILLIAM. Is it true that the mechanism of transfer genetic information in system (10) is the classical recursive process?
Proposition. Hypothesis WILLIAM is said to be true if be realized the conditions theorems 6-7.
This will be the object of another paper.

References:

1. Gritsak V. V. (Gritsak-Groener V. V.) // Proc. Nat. Acad. Sci. Ukraine SSR, ser. A, N6(1990)68.
2. Gritsak V. V. (Gritsak-Groener V. V.) // Bulletin Schevtshenko Kyjiv National University, ser. phys.-math. science, $\mathrm{N} 1(1993) 5$.
3. Gritsak-Groener V. V., Gritsak-Groener Julia, Arabnia Hamid R. Superpower Computational Creation for Biological Computing // Proceedings of the 2005 International Conference on Scientific Computing, Las Vegas, Nevada, USA June 20-23. - 2005. - P. 184-190.
4. Gritsak Valery V. (Gritsak-Groener V. V.), Okolita Julia P. A Categorical Model of Neurosystem // Proceedings of the 1996 International Conference on Parallel and Distributed Processing Techniques and Applications, Sunnnyvale Hilton, California, USA, August 9-11. - 1996. - P. 1610-1613.
5. Gritsak-Groener V. V., Gritsak-Groener Julia. ARTS COMBINATORIA. Second edit., - Charkiv, NTU "HURE", 2008.
6. Groener Wilhelm (Gritsak-Groener V. V.) Fundamental of Mathematical Cybernetics. - Zhytomyr, ZhDTU, 2004.
7. Gritsak-Groener V. V., Hamid R. Arabnia, Modern Mathematical Biology, MIT Press, N.Y., 2006.
8. Gritsak-Groener V. V. Fundamental of Mathematical Cybernetics, vol 2. - Zhytomyr, ZhDTU, 2006.
9. Gritsak V. V. Computational Model of Transfer RNA Molecules. Preprint 87IMBG-14. - Kyjiv, Institute of Molecular Biology and Genetics of National Academy Science of Ukraine, 1987.
10. Gritsak-Groener V. V. Biocomputers 1 // Physics of consciousness and life, cosmology and astrophysics. 2010. - № 2.
11. Gritsak-Groener V. V. Haotics and Biocomputing Application (Biocomputers 2) // Physics of consciousness and life, cosmology and astrophysics. - 2010. - № 3.

Статья поступила в редакцию 12.01.2011 2.

Гритсак-Грёнер В.В., Гритсак-Грёнер Ю., Петроу М.
 Биокомпьютеры 3

Биологическая теория вычислений имеет свои корни в математической биологии и математической кибернетике. Найденный и продемонстрированный в [1, 9] V. V. Gritsak-Groener пример супермощных биологических вычислительных возможностей открывает новую область компьютерной науки. Цель этой статьи - описание действия ДНК и РНК-молекул посредством действия линейных клеточных автоматов. А так как в [4, 7] была получена полная классификация линейных клеточных автоматов, мы получаем полную классификацию логического взаимодействия ДНК, РНК-молекул. Показано (Теорема 1 и Теорема 2), что структура взаимодействия ДНК-РНК логически эквивалентна структуре специальных Линейных Клеточных Автоматов (g-LCA) и что g -LCA есть Логически Полные (Теорема 3 and Теорема T 5). Основной результат статьи: Теоремы $6-7$ о том, что g-LCA удовлетворяет необходимым и достаточным условиям для Универсальной Рекурсивной Конструкции (URC). Статья - продолжение [10, 11]. Ключевые слова: компьютер, геном, клеточный автомат, матроид, категория, ДНК, РНК.

Реферат

"Кошмар" современной компьютерной техники состоит в том, что, несмотря на увеличение ее быстродействия, нельзя гарантировано в приемлемое время решать NP-полные и более сложные задачи. (К NPполным задачам принадлежат даже такие простейшие задачи, как задача коммивояжера, линейная одномерная задача оптимизации - одномерный «рюкзак» - и подобные). Более того, как было впервые показано в [1] и [3] задачи считывания и реализации генетической информации в ДНК, РНК взаимодействии есть, также NP-полной вычислительной задачей. Значит, любой живой организм обладает вычислительным процессором, который несравнимо превосходит по скорости вычислений любой сверхмощный современный и будущий компьютер (электронную реализацию классической рекурсивной теории).
Еще в 1929 году Джон фон Нейман показал, что плоский клеточный автомат может быть не менее мощным по вычислительной скорости, чем любой компьютер, реализующий любой вариант рекурсивной теории, например, Машину Поста.
В [1] и более подробно в [7], была дана полная классификация конечных линейных клеточных автоматов. В настоящей работе, показано, что ДНК, РНК-взаимодействие эквивалентно, некоторому специальному линейному клеточному автомату g-LCA (не более 27 состояний клеток и не более 10 вычислительных стрингов). Тем самым, предлагается проект биокомпьютера, который позволяет решать NP-полные задачи. Мы надеемся, что после нашей статьи приблизится конец «Кошмара» современной компьютерной техники.

