
Физика сознания и жизни, космология и астрофизика

№ 2, 2011 33

SYNERGETICS AND THEORY OF СHAOS

УДК 167.7, 517
Gritsak von Groener V.V., Gritsak-Groener J., Petrou M.

BIOCOMPUTERS 3

University of Georgia, Georgia, USA; Laboratory of HRIT Corporation, Switzerland, USA, UK
 Imperial College, University of London; QuVIET

e-mail: v_hrit1000000@yahoo. com

Biological computing theory has its roots in mathematical biology and mathematical
computer sciences. Introduced by V. V. Gritsak-Groener [1, 9] in giving an example of
superpower biological computational creation, which has beginning of new field of computer
sciences. The aim of this article is to describe complex logical interaction between the DNA,
RNA-molecule that is transmitted through the medium of the linear cell automata. We show
(Theorem 1 and Theorem 2) that the interaction’s structure of DNA-RNA is logician’s
equivalent to the structure Linear Cell Automata (g-LCA) and we show that g-LCA is Full
Logical (Theorem 3 and Theorem 5). This article contains the main results: Theorems 6–7
determines the needed and the sufficient conditions of equivalence g-LCA to Universal
Recursive Construct (URC). This article is continuous for articles [10, 11].

Keywords: computer, genome, cellular automata, matroid, category, DNA, RNA.

1. Introduction

Biological computing theory has its roots in mathematical biology and mathematical computer
sciences. Introduced by first author (see [1], [9]) in giving an example of superpower biological com-
putational creation, which has beginning of new field of computer sciences. The aim of this article is
to describe complex logical interaction between the DNK, RNK-molecule that is transmitted trough
the medium of the cell automata.

We shall recall briefly the notion of biological computing.
A Linear Cell Automata (g-LCA), when it goes beyond the very elementary level of the Gen-

eral Cell Automata, makes considerable use of the results of DNA-Automata, as we remarked in the
p.3. Let f be given by

f: Ala, Cys, . . ., Trp, Tyr Codons. (1)
We have linear cell automata C = (D, f, end, end2), where D is DNK-molecule, f is stand function of
C, end is beginning information and end2 is finishing of information.

Simple directed graph, or simple digraph is an ordered pair:
 = (V(), E()), E() V() V(), (2)

wherе V() is а nonempty set called the set of vertices of ; E() is a set disjoint union from V(),
called the set of arrows of . Before, if e = v1, v2E() e# = v2, v1 E(), v1,v2V(). If e =

v1, v2 arrow of , v1

def

 +e is called the tail (or initial) of e, and v2

def

 -e are called the spike (or
terminal) of e. A digraph is an ordered pair

 = (V(), E()), (3)
where E() = E1(1) … En(n) and Ei(i), i = 1, n is arrows of simple digraphs i = (V(), Ei(i)).
Suppose = (V(), E()) is a digraph. If e = v1,v2 E(), v2 is called an outneighbor of v1, and v1
inneighbor of v2. e is said to be incident out of v1 and incident into v2. fl(v1) (or +v1) denotes the set of
inneighbors v1 of in . Similarly, st(v1) (or -v1) denotes the set of outneighbors v1 of in . An arrow
having the same ends is called a loop of . A diwalk joining the vertex v1 to the vertex vn+1 in a digraph
 is an alternating sequence L:

v1 e1 v2 e2 v3. . . en vn+1 (4)
with ei incident out of vi and incident into vi+1. A directed walk L (4) is called a diloop if v1 = vn+1. A
digraph (3) is called a diforest if not contains a diloop. Moreover, a digraph

 = (V(), E()), (5)

Physics of consciousness and life, cosmology and astrophysics

34 № 2, 2011

is called a straightedge if V() = [0,1, 2, . . ., n] and E() {(i-1, i)}, i[1, n]. Also, a linear digraph
is called a digraph = (V, E) such that there exists a surjective map

ℭ: ,
where is a straightedge and a restriction of the map on diwalk L

 is injective map, where L is a

subgraph . Finally, a vertex noun of vV is called ℭ(v). The others detailed see [5].
Let A = (a1, . . ., ai, . . .) be a set, whose elements will be called codons. We say that triple

 has cell universe, if there is given an injective map (A, ζ , U) = ل
ζ :, A U U2 ,

where U is non-empty set, A = (a1, . . ., ai, . . .) , and m is maximal arity of codons for A. The set U
is called a vertices cell (v-cell). A cell digraph is an ordered pair

 = (V, E), V = A \ {}, E VV (6)

wherе V is а nonempty set called the set of vertices of ; E is a subset disjoint union from V, called
the set of arrows of if the following conditions hold:

(1) xV, (x, x)E;
(2) x,yV, (x,y) E (y,x)E.

Before, if e = v1, v2E e* = v2, v1E, v1,v2 V. If e = v1, v2 arrow of , v1

def

 +e is

called the initial of e, and v2

def

 -e are called the terminal of e.

Theorem 1. Cell digraph of DNK-RNK -Automata is a linear diforest.

The proof’s detailed is given in [6]
Let = (V, E) is cell digraph (6), Vh V, Vy V, and D() is the set of all directed walk

l(v1, vn+1) = v1 e1 v2 e2 v3. . . en vn+1, where v1Vh , vn+1Vy. There is given a map
: E , .

The set is called an arrows cell (a-cell). Vh and Vy are called an input and an output.
Sekstant

CL = (, , , Vh, Vy, d) (7)
is called 2 -Band Cellular Automata (2CA). Further, the word S = a1 a2 . . . as is induces 2LCA (7), if
a1Vh, asVy, ζ UU2, ζai UU2, (ai,ai+1) E, (ai,ai+1) (,). Here, CL
is called 2 -Band Linear Cellular Automata (2LCA).

Without loss of generality it can be assumed that 2LCA make up by the two cell bands, where
DNA is the cell band (DNA-band) and RNA is the arrows cell band (RNA-band). Futhermore, an
information of DNA-band takes to RNA-band under the structure of cell digraph .

Theorem 2. 2 -Band Linear Cellular Automata DNK-RNK-Automata is local isomorphic to the Linear
Cellular Automata (LCA), where LCA has Ng rules of cell transform and Stg cell states, µ(Ng)
< and µ(Stg) < .

The proof is given in [7], [8].

Corollary 2.1. 2LCA DNK-RNK-Automata ℑ is isomorfic to the linear cellular automata g-LCA. Let

Ng and N0 rules of cell transform of ℑ and g-LCA, Stg and St0 cell states ℑ and g-LCA, then g-
LCA has Ng 2N0 +1, Stg 2St0.

2. Logical Realization of g-LCA ℑ
The formal symbol (fs) of a logical theory are the following:

(a) A ={a1, a2} codon – letters (c-letters).
(b) The logical sign “ ”, which is called the disjunction.

(c) The logical sign “⌉ ”, which is called the negation.

(d) The logical sign “⊚”, which is called the distiguition

(e) The logical sign “⊡”, which is called the replication.

Физика сознания и жизни, космология и астрофизика

№ 2, 2011 35

(f) The specific sign “=”, which is called the equation.

(g) The specific sign “⊂”, which is called the includition.
(h) The specific sign “”, which is called the belongution.
(i) The specific sign “(”, which is called the left bracket.
(j) The specific sign “)”, which is called the right bracket.

In g-LCA ℑ letters A = (a1, . . ., ai, . . .) are the codons, where (A) < . M(A) be the free
monoid generated by A. The elements of M(A) are called g-words and are identified with finite se-
quences

S = a1 a2 . . . as , (8)
where ai A, i = [1,s], = end or end2. We recall that the length l(S) of g-words (8) is s. The composi-
tion in M(A) will be written multiplicatively, so that

S1 S2 = a1 a2 . . . as b1 b2 . . . br ,

is the sequence obtained by juxtaposition of S1 = a1 a2 . . . as and S2 = b1 b2 . . . br .
The 0-words = is the idedentity element of the monoid M(A). Without loss of generality it

can be designate that
S1 S2 = a1 a2 . . . as b1 b2 . . . br, (9)

And designate of g-word S that
S = a1 a2 . . . as.

Theorem 3. g-LCA ℑ is linear cell automata if 30 cell states are:
a) 20 non-empty codons of genetic code;
b) 7 formal symbols;
c) end-codon, end2-codon, -cell,

and 8 rules of cell transform of ℑ.
Proof. The proofs of all statements in this theorem, including all lemmas can be found in [6], [8].

Lemma 3.1. Let g-LCA ℑ is contained in the band the word S = S1 S n
 S2, where S1 = a1 . . . as,

S2 = b1 . . . br, S
n
 = 1, …, n, i is equvalence to -cell. Then there is an ℑ-algorithm of

the processing S1 S n
 S2 S1 S2.

The Algorithm Scheme. We leave to the words S1, S2 /{n} without change. Further we change a cell
n on b1, the cell b1 on b2, . . ., the cell br-1 on br, see Fig. 1.

a1 , , . as 1 , , , n b1 , , , br

 . , , a1 , . , as b1 . ., , br , .

Fig. 1

The detailed ℑ- algorithms of the processing S1 S n
 S2 S1 S2 can be found in [6].

Lemma 3.2. Let S be a g-word. We shall denote by S obtained by writing, from left to right, the sign

“”, the g-word S. Let S1 = a1 . . . as and S2 = b1 . . . br be g-words. Then there is an ℑ-al-
gorithm of the processing S1 , S2 (S1 S2), where we shall denote by (S1 S2), which is

called a disjunctions of S1 and S2 , is a g-word, see Fig. 2.

 . a1 . . . as . . . b1 . . . br .

 . (a1 . . . as b1 . ., . br) .

Fig. 2

Physics of consciousness and life, cosmology and astrophysics

36 № 2, 2011

The detailed ℑ- algorithms of the processing S1,S2 (S1 S2) can be found in [6].

Lemma 3.3. Let S = a1 . . . as be a g-word. We shall denote by ⌉(S) obtained by writing, from left to

right, the sign “⌉”, which is called a negations of S (It is read : not S). Then there is an ℑ-
algorithm of the processing S ⌉(S), see Fig. 3.

 a1 . . . as

 ⌉
 (a1 . . . as) . . .

Fig. 3

The detailed ℑ- algorithms of the processing S ⌉(S) can be found in [6].

Lemma 3.4. Let S = a1 . . . a . . . a . . . as be a g-word and “a” be a letter. We shall denote by ⊚aS the

g-word constructed as follows: form the g-word ⊚S, link each occurrence of a in S to the ⊚
written on the left of S, and then replace a everywhere it occurs by the sign ⊡, which is called

a distiguitions of S. Then there is an ℑ-algorithm of the processing S ⊚a(S) =

= a1 . . . ⊡ . . . ⊡ . . . as, see Fig. 4.

 . . a1 . . . a . . . a . . . as

 ⊚a
 . . a1 . . .

 ⊡ . . . ⊡ . . . as

Fig. 4

The detailed ℑ- algorithms of the processing S ⊚(a)(S) can be found in [8].

Lemma 3.5. Let S1 = a1 . . . as and S2 = b1 . . . br are g-words. We shall denote by =(S1S2) obtained by

writing in left of S1S2 the sign “=”, when S1 coincindence S2, which is called an equations of

S1 to S2 (It is read: S1 equation to S2), for otherwise it denote =⌉(S1S2) obtained by writing in

left the signs “=⌉”. Then there is an ℑ-algorithm of the processing
S1,S2 = (S1 S2) or =⌉(S1S2), see Fig. 5.

 = ⌉ (a1 . . . as b1 . ., . br) .

 =⌉
 . a1 . . . as . . . b1 . . . br .
 =
 . = (a1 . . . as b1 . ., . br) .

Fig. 5

The detailed ℑ- algorithms of the processing S1,S2 = (S1 S2) or =⌉(S1S2) can be found

in [7], [8].

Lemma 3.6. Let S1 = a1 . . . as and S2 = b1 . . . br are g-words. We shall denote by ⊂(S1S2) obtained by

writing in left of S1S2 the sign “⊂”, when S1 is a segment of S2, which is called a includations

of S1 to S2. Then there is an ℑ-algorithm of the processing S1,S2 ⊂(S1 S2), see Fig. 6.

 . a1 . . . as . . . b1 . . . br .

Физика сознания и жизни, космология и астрофизика

№ 2, 2011 37

 ⊂
 . ⊂ (a1 . . . as b1 . ., . br) .

Fig.6

The detailed ℑ- algorithms of the processing S1,S2 ⊂(S1 S2) can be found in [7], [8].

Lemma 3.7. Let S = a1 . . . as is g-word and a is a c-letter. We shall denote by (aS) obtained by writ-

ing in left of aS the sign “”, when a is a segment of S, which is called a belongutions of a to

S. Then there is an ℑ-algorithm of the processing a,S (aS), see Fig. 7.

 a . . . a1 . . . as .

 (a a1 . ., . as) .

Fig.7

The detailed ℑ- algorithms of the processing a, S (a S) can be found in [7], [8].

Corollary 3.1. We have

Ng 27, Stg 10. (10)

Theorem 4. A linear cellular automata is universal computation.

Proof can be found in [7, 8].

3. g-LCA Universal Design

By [2] (detailed in [7], [8]), it follows that universal cellular automata is isomorphic g-LCA
universal design. For all genetic information in system

DNR RNR Protein (11)

we have g-LCA universal design.

The specific signs “=”, “⊂”, and “”, of a theory G are called an iteration, and the others are
called a linguisticotion. With every the iteration is associated a natural number called its weight. A g-

word is said to be of the first genus if it begins with a linguistically sign, or with a “⊚”, or if it consists
of a c-letters; otherwise it is of the second genus.

Theorem 5. Let in the theory G of LCA is a sequences S1 . . . Sn of g-words which has the following
property: for each g-word S of the sequence, one of the following conditions is satisfied:

(1) S is a c-letter.
(2) There are two g-words S1 and S2 of the second genus, preceding S, such that S is S1 S2.
(3) There is g-word S1 of the second genus, preceding S, and a c-letter a such that S is

⊚(a)S1.
(4) There is in the sequences a g-word S1 of the second genus, preceding S, such that S is

⌉S1.
(5) There is an iteration i of weight 2 in G, and two g-words S1 and S2 of the first genus, pre-

ceding S, such that is i(S1S2).
Then the subsequences S1 . . . Si, i n, is a construct of Si.

Proof is in [2].

The g-words of the first genus, which appear in the construct of G, are called g-terms in LCA.
The g-words of the second genus, which appear in the construct of G, are called g-relations in LCA.

Physics of consciousness and life, cosmology and astrophysics

38 № 2, 2011

4. Classified Theorem of 2LCA

We are given a map w: A N, where the set N is positive integers. w(ai) is called arity of

the с-letter ai. For each non-null the g-word S = a1 a2 . . . as, we put w(S) =

s

i
iaw

1

)(, and w() = 0,

w() = 2. w(S) is called the mass of the g-word S. We denote S⊡ the g-word obtained by deleting the
states ⊡ in S with the left shift on the remote places. If S1 = S ‘ S2 S’’, the g-word S2 is said to be a

segment of S1.
A worm is a sequence Si, i =[1,n], of g-words with the following property: for g-word S of

sequence, one of the following two conditions is satisfied:
(1) S is a sign of mass 0.
(2) m (m n) g-words S1, . . ., Sm in the sequence such that it be founds in the worm Si

before S, and a sign mass m such that S = S1 . . . Sm.
A snake is a g-word S of the following two conditions is satisfied:
(3) l(S) = w(S) + 1, where l(S) is length of the g-word S.
(4) For proper a segments S1 of S, w(S1) l(S1).

Theorem 6. If a g-word S is an iteration and a linguisticotion in the theory G, then S is a snake.

Proof. The proofs of all statements in this theorem, including all lemmas can be found in [2], [8].

Lemma 6.1. If S1, . . ., Sm are m a worm and if is a sign of mass m, then the g-word S = S1 . . . Sm
is a worm.

Lemma 6.2. A g-word is a worm iff it is a snake.

Lemma 6.3. a worm may be представлено g-LCA in exactly one way in the form S1 . . . Sm,
where S1, . . ., Sm are worms and has mass m.

Theorem 7. Let a g-word S be a snake.
For S to be a g-term iff that one of the following conditions be satisfied:

() S consists of a single c-letter.

() S begins with “⊚”, S⊡ is identical with the iteration S1 . . . Sm
 and its are g-

relations.

() S begins with a linguistication sign “”, S⊡ is identical with the iteration S1 . . .
Sm and its are g-terms.

For S to be a g-relation iff that one of the following conditions be satisfied:

() S begins with a “” or a “⌉”, S⊡ is identical with the iteration S1 . . . Sm (or ⌉S1 .
. . Sm) and its are g-relations.

() S begins with the iteration sign “”, S⊡ is identical with the iteration S1 . . . Sm

and its are g-terms.
 Si are a g-words.

Proof. The Lemma 7.1 – 7.4 show that the conditions of theorem 7 are sufficient.

Lemma 7.1. If S is a g-relation in the theory G of g-LCA, then ⌉S is g-relation in G.

Proof in [2] and [8].

Lemma 7.2. If S1 and S2 are g-relations in the theory G of g-LCA, then S1S2 is a g-relation in G.

Proof in [2] and [8].

Lemma 7.3. If S is a g-relation in the theory G of g-LCA, and if a is a c-letter, then ⊚a(S) is a g-term
in G.

Proof in [2] and [8].

Физика сознания и жизни, космология и астрофизика

№ 2, 2011 39

Lemma 7.4. If S1, . . ., Sm are g-terms in the theory G of g-LCA, and if “” is an iteration of mass m
in G, then S1 . . . Sm is the g-relation in G.

Proof in [2] and [8].

Lemma 7.5. The conditions ()-() in theorem 7 are necessary conditions.

Then proof is trivial.

5. Hypothesis WILLIAM

Hypothesis WILLIAM. Is it true that the mechanism of transfer genetic information in system (10) is
the classical recursive process?

Proposition. Hypothesis WILLIAM is said to be true if be realized the conditions theorems 6-7.

This will be the object of another paper.

R e f e r e n c e s :
1. Gritsak V. V. (Gritsak–Groener V. V.) // Proc. Nat. Acad. Sci. Ukraine SSR, ser. A, N6(1990)68.
2. Gritsak V. V. (Gritsak–Groener V. V.) // Bulletin Schevtshenko Kyjiv National University, ser. phys.-math.

science, N1(1993)5.
3. Gritsak–Groener V. V., Gritsak–Groener Julia, Arabnia Hamid R. Superpower Computational Creation for

Biological Computing // Proceedings of the 2005 International Conference on Scientific Computing, Las
Vegas, Nevada, USA June 20-23. — 2005. — P. 184–190.

4. Gritsak Valery V. (Gritsak–Groener V. V.), Okolita Julia P. A Categorical Model of Neurosystem // Pro-
ceedings of the 1996 International Conference on Parallel and Distributed Processing Techniques and Ap-
plications, Sunnnyvale Hilton, California, USA, August 9-11. — 1996. — P. 1610–1613.

5. Gritsak–Groener V. V., Gritsak–Groener Julia. ARTS COMBINATORIA. Second edit., — Charkiv, NTU
“HURE”, 2008.

6. Groener Wilhelm (Gritsak–Groener V. V.) Fundamental of Mathematical Cybernetics. — Zhytomyr,
ZhDTU, 2004.

7. Gritsak–Groener V. V., Hamid R. Arabnia, Modern Mathematical Biology, MIT Press, N.Y., 2006.
8. Gritsak–Groener V. V. Fundamental of Mathematical Cybernetics, vol 2. — Zhytomyr, ZhDTU, 2006.
9. Gritsak V. V. Computational Model of Transfer RNA Molecules. Preprint 87IMBG-14. — Kyjiv, Institute

of Molecular Biology and Genetics of National Academy Science of Ukraine, 1987.
10. Gritsak–Groener V. V. Biocomputers 1 // Physics of consciousness and life, cosmology and astrophysics. —

2010. — № 2.
11. Gritsak–Groener V. V. Haotics and Biocomputing Application (Biocomputers 2) // Physics of consciousness

and life, cosmology and astrophysics. —2010. — № 3.

Статья поступила в редакцию 12.01.2011 г.

Гритсак-Грёнер В.В., Гритсак-Грёнер Ю., Петроу М.
Биокомпьютеры 3

Биологическая теория вычислений имеет свои корни в математической биологии и математической ки-
бернетике. Найденный и продемонстрированный в [1, 9] V. V. Gritsak-Groener пример супермощных
биологических вычислительных возможностей открывает новую область компьютерной науки. Цель
этой статьи — описание действия ДНК и РНК-молекул посредством действия линейных клеточных ав-
томатов. А так как в [4, 7] была получена полная классификация линейных клеточных автоматов, мы
получаем полную классификацию логического взаимодействия ДНК, РНК-молекул. Показано (Теорема 1
и Теорема 2), что структура взаимодействия ДНК-РНК логически эквивалентна структуре специальных
Линейных Клеточных Автоматов (g-LCA) и что g-LCA есть Логически Полные (Теорема 3 and Теорема T
5). Основной результат статьи: Теоремы 6–7 о том, что g-LCA удовлетворяет необходимым и достаточ-
ным условиям для Универсальной Рекурсивной Конструкции (URC). Статья — продолжение [10, 11].
Ключевые слова: компьютер, геном, клеточный автомат, матроид, категория, ДНК, РНК.

Реферат

Physics of consciousness and life, cosmology and astrophysics

40 № 2, 2011

”Кошмар” современной компьютерной техники состоит в том, что, несмотря на увеличение ее быстро-
действия, нельзя гарантировано в приемлемое время решать NP-полные и более сложные задачи. (К NP-
полным задачам принадлежат даже такие простейшие задачи, как задача коммивояжера, линейная одно-
мерная задача оптимизации – одномерный «рюкзак» — и подобные). Более того, как было впервые пока-
зано в [1] и [3] задачи считывания и реализации генетической информации в ДНК, РНК взаимодействии
есть, также NP-полной вычислительной задачей. Значит, любой живой организм обладает вычислитель-
ным процессором, который несравнимо превосходит по скорости вычислений любой сверхмощный со-
временный и будущий компьютер (электронную реализацию классической рекурсивной теории).
Еще в 1929 году Джон фон Нейман показал, что плоский клеточный автомат может быть не менее мощ-
ным по вычислительной скорости, чем любой компьютер, реализующий любой вариант рекурсивной
теории, например, Машину Поста.
В [1] и более подробно в [7], была дана полная классификация конечных линейных клеточных автома-
тов. В настоящей работе, показано, что ДНК, РНК-взаимодействие эквивалентно, некоторому специаль-
ному линейному клеточному автомату g-LCA (не более 27 состояний клеток и не более 10 вычислитель-
ных стрингов). Тем самым, предлагается проект биокомпьютера, который позволяет решать NP-полные
задачи. Мы надеемся, что после нашей статьи приблизится конец «Кошмара» современной компьютер-
ной техники.

