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We introduced the notions control of chaotics, i.e. control the finite chaos structure.
Further we introduce the notion control strategy. In section 2 review some of the standard facts
on control for chaotics. In section 3 have complied some basic facts of chaos flows control
with penalty function. Section 4 is devoted to the study of control strategy against external
controller and antiterrorist control strategy. Let us the groundset A c ZxZ to the case under
discussion in section 5. In section 6 we gave the direct algorithm of single-center infection on
ZxZ with the ramified boundary of the ground-set A c ZxZ. Finally in section 7 we gave
inverse algorithm for computational disaster advances(DA)of single-center infection on ZxZ
with the ramified boundary of the ground-set A c ZxZ. Also we designed and developed a set
of algorithms for construction of the arbitrary and concrete chaotic set that can efficiently be
used in evaluations of the propagations autooscillatory geotectonic waves.
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Nichts war noch vollendet, eh ich es erschaut,
ein jedes Werden stand still.

Meine Blicke sind reif, und wie eine Braut
kommt jedem das Ding, das er will.

Nichts ist mir zu klein und ich lieb es trotzdem
und mal es auf Goldgrund und gro8,
und halte es hoch, und ich weifl nicht wem
16st es die Seele los...!
Rilke
1. Introduction

Let the set B be the disaster advances. We will consider the general direct algorithm for viral
extension and other disaster advances (DA) is given by the closer of the set B € A for the chaotic a
chaotic H = (A, Q), Q € 24, Let tis an iteration number of DA. Hence B is the disaster zone. The DA
takes the extension B to ~ (B)

BcCic..cCc..cC=~(B)CA, (1)

where C; is the part closer of B. Cycles xi are elements of Q. Let y; be given by Ciq 2 Xt ¢ Cwa. Then
Xt is interpret of the disaster source. The inverse algorithm for computational disaster advances (IDA)
is given by coordinates of infection sources {x:}, t = [1, n], n=p(Q).
2. Glossary

For convenience of the reader we repeat the relevant material from [5].

Let A, B be the sets. A #: A —a—Pp B is the multimap(mm) &: A — 2°,

Huuto - BHE NPO3pEHUil MOUX - HE B CUET:
3aCThIB, KAMEHEET IIyTh.

JInmp K 3penoMy 3peHUIO IPUTEUET
Belllel BOXKIEICHHAs CYTh.

Huuto MHe - Hu uto. Ho 1004 ero, s
Ha (OHE MHUILTY 30JI0TOM:
YbI0 JIyIly BOCXUTHUT? - ¥ TbMa 11 TBosA? -
OTPOMHBINA HEBEJIOMBIN JIOM...
nepegoo A. Ilpoxonvesa
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The pair G = (&, A) is called a control graph G of mm & The elements of the set A are a
nodes of G. The pairs u = (o, % a)) aare called an arrows of G, where the a is a tail of u and %) is
a spike of u. N(n) = {keN: k<n }. ® = (A : ieN(n)) is called an indexed family. An indexed family
R is called a personal family if A; # A; when i # j. By definition put A] = A\A,. A family sets
S°={A;:ieN(n)} is called a complement of the S = { A, : ieN(n)}.

Suppose

= (A : C, ieN(n)) (2
is an personal family such that
D wC)=9,
(2) ifCieCj=>Ci=Cjwheni=j.

We call &#a chaotic (chaos) on the set A. A chaotic M on the set A is the chaotic of circuits
of a matroid

= #EX>NUN

M = (A, € ={Z}: C;, ieN(n)) (3)

on the set A if D¢ € and € satisfies the elimination axiom :

(ax) whenever Z' = Z%€€ and Asoe Z*

~ Z2, there is a Z°e€ with Z° € Z* U
Z2\{a}.
A binary relation > on A is called a preference
if = reflexive, transitive, and complete. Let >
be a strongly binary relation on A. Then an
iff
acute hull >> of < there exists a sequence a
= 0o, . . ., 05= P such that @ > a1 (iEN(n-1)). |88
For every fixed a*€A let J(> , a*) = {acA : |}
o*>= a}. Similarly, (>, a*) = {a€A : a*> a}.
Let U is a finite set. A digraph D is a
pair is a pair D = (U, >). A ditree T~ is a digraph
(U, >) such that there exist an element a’eU (to

be called a root of the digraph) having the fol- | )
lowing properties: Figure 1. Dmytry Pollack. Disaster Zone

a. o.>>> a° (oel),
b. (>, 0°) =,
c. u(3(>, o)) =1 (a#a).

The elements of the set U are a vertex of T>. The pairs u = (a, B) are called an arrows of T~ if
3I(>, o) = B.
ZXZ. is called square lattice over Z, where Z a ring of integer numbers. The ground-set
A € ZxZ. Now consider a graph T = (V, E), where the vertex-set V = A and edge-set E = {eeB, e
e{Vv(i,j) eV: (i-1,), (i,j-1), (i+1,j), (i,j+1)}}. Before consider the inverse function on a graph I, which
can be written in the form _
w)= 2 11 om (4)

n (i,j)eE
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where mm; is either 1 or -1, @ = €', here | is a number of iterations.

Let W be the infection’s network on square lattice Q® with ground-set A € ZxZ. Suppose that
there is a supply of disarder fluid (df) at the origin and that each edge of Q?allows fluid to pass along
it with probability p, independently for each edge. Let Pi(p) is the probability that vf spreads to at least
i vertices. Thus

P¥ = limP, (p)
is called a critical probability of W.

Proposition 1. [See 5]. The critical probability that vf spreads to at least vertices on the square lattice
W is between 0.51 and 0.68.

We shall say that the chaotic (2) is a controlled chaos &, where [i]e N(n) is a controller, the

index family (C;, ieN(n)) are a territory of the controller [i], and Z = {[1], ..., [n]} is a control-
brigade (or brigade). The elements of set A are a position of control for the chaotic

H=(A:C,ieN(n)),

A is a position-set. Suppose the pair (Z*, Z?) is partition Z when Z* are an active controllers,
and Z2 are an passive controllers.

We shall say that for the chaotic H there exists a control if the following conditions hold:
(a) we have a multimap
QA ==be=p A, (5)
then this is called a law of the control;

(b) for any [i] there exists a preferences i, then this 3;is called a preference of controller [i].
def

Let Cy = (o Q(a)=2) and using a transformation of Q we get Q(Cy) N Cy = @, where keN(n).
Suppose aeeA be a beginning element of position. We shall say that a brigade Z = {[1], . . .,
[n]} experts control over the chaotic H if the following steps hold:

(1) let ([i], .--s[J]s --o[1]) # D (1< i < ... j<...L1<N) is maximum allowable of controller number

such that Q(ag) N C, # I, where te(i, ..., j, ..., 1) whence the controller [t] choose element of
position *! e Q(ay), control is continue and we have the controllable positions ag, %, ..., %I,
ol .
e X
2 if (i1, ....I11, -...[1]) = < the control is finished;
(3) lette(i, ..., J, ..., D), if ([id], ---, [ii@)s -- 5041, -+ Drgpds -« -5L], -+ [e]) #= & is maximum allow-
able of controller number such that Q(“}) N C, =3, where t1€(i1, «euy r(i), eeesits oevs Jr(i)s

.essl15 --oslr@y) Whence the controller [t] choose element of position ! e Q( %! ),control is con-

tinue and we have the controllable positions
QLo

T
d o of

' L) ' ) Lry
aél.'.-"".-azl 21?'"'?-“; ag'.'"".- a?_ .

-

@) if ([ial, ..., [ie@)s ---5040s -5 Ol -~ 5[], ---5[hp]) = < the control is finished;
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(5) and so on, as so long the controller induce the nonempty positions in the ditree
T-=(U,>) (6).
A depth of control is called a lenght of maximal depath in T>.
A preference 3 of controller [i] it is possibility represent such that a numerical bounded

function fi(x): x —> R as follows: a * B < fi(a) > fi(B). Then we shall say that a brigade
Z={[1], .. ., [n]} experts control with penalty function f;(x) over the chaotic H. If a controller [i] is

the active, it is customary were more preferable to position of control with respect to 3, f." (C;) = sup

xeC;

fi(x) will be written in terminology of penalty function. If a controller [i] is the passive, it is not cus-
tomary were less preferable to position of control with respect to 3, f, (Cj) = ingc fi(x) will be written

in terminology of penalty function.
3. Chaos Flow Control with Penalty Function

3.1
Consider a finite digraph
I'=(V(I),E(), V', Vv, 9), @)
where E(I') is the arc-set, V(I') is the vertex-set containing a source v'eV(I') and hole v'eV(I'), and ¢ :
E(I') — R is the function defining the capacity of arcs.

We can digraph I" (7) in form a chaotics s#= (A : C;, ieN(n)), where A = V(I'), C; = E(I), and

¢ : E(I) — R" is a penalty function, [i]eN(n) is the controllers. Preference i give the penalty func-
tions. All controllers is active. The law of control be determined next graphical constructions.
Let
?={PcV(I):Vv'eP, v'g P}
For Pe®, we refer to

R(P) = {ecE(I') : 0'e e P, 0e ¢ P}
as the cut corresponding to P and define its value of a penalty function by

o(P) = Z'b(ei), ecR(P), r=IR(P) .

A flow in T is a function
O:EI)—R"
that satisfies capacity condition:
0<0 (e)<o(e)
for each eeE(T") and the conservation condition:
0 ('v)=0 (5V)
at each vertex veV/(I') distinct from e* and e, where
O@GVv) = 2 OF) and@ (5v) = 2 O).
Veed*v Veed v
A chaos flow control of digraph I' with the penalty function ¢ : E(I’) —> R" is
maximization the value of flow @.

Proposition 2. [See 5]. The chaos flow control of digraph I' with the penalty function ¢ : E(T) — R
"is equal to the minimum capacity of a cut.
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Corollary 2.1. Efficient algorithms of complexity such as O( M(I")| ®) are known for finding a maxi-

mum flow.

The proof and the algorithm are found in [1].

. .,am} and the cycles

3.2.
The basic definitions of the terms pertaining to flows control in general chaotic are as follows.
Let 3=(A,C) be finite chaotic with the groundset A = {apa;, .

C = {C.C,, .

C(ao) = {a;€C : Va3 &}, j = [1,r]. And given
V={veQ" : k=[1m]},
where vy is called weight of the element a,eA.

. ,Cg}c 2% ageA and is called the flows with input in a, of 3. Given C(ay) € C,

There is a standard a chaotic flow control problem. Really, the chaotic J =(A,C) is the con-

trolled chaos. A is the position-set, [i]eN(d) is the controllers,

Ci is the territory of the controller [i], and Z = {[1], . . ., [d]} is
the control-brigade. The law of control and penalty functions
be determined next chaotic constructions.

Further, given the matrix M =[], where t;; = 1 if

ai€q;. Since aj¢aj, we have t; = 0. The matrix M is called
flow-matrix across the cycles C(ag). Finally, define the flows

Fs of I by

(plupZ! L '1pr)1 piE Q+’
where
Zrp <v,i=[1d]
j=1
V5 = zpj is called value of flows Fs. (The penalty
j=1
function!)

Examples. A blood flow, a limphe flow, a toxic flux,
geotectonic flow, a peniciline propagation and other
are examples for flow in chaos.

Finally we assume that
(X, ...x%)
is the solution of the problem

P(3) = ij —— max
j=1

ZTijxj <v,,i=[1,d].
j=1

The vector (XJ, ...,

Figure 2. Anatoly Fomenko. From the flows

x°) is a maximum J-flow in the presence of weights V = {vie Q" : i=[1,d]}

and flows with input in ageA. If ¢, is cycle of J which contains a, then by the capacity f(cy) of ¢x (with

respect to b) we mean
fle)= 2 v, .

ifa; ecy

We say that the chaotic 3= (b) is called a regular if for each a;eA which is not a loop of

44
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and for any set of capacities V={v, ...,vq} the value of the maximum J-flow equals the minimum ca-
pacity f™"(cx) of ay, i.e. _
PT() = F™"(cx). (8)
The figure 2 is the illustration of the chaotic-flow.
Next, we are now in a position to state the problem of chaotic theory.

Problem JULIA. Let 3=(A,C) is a finite chaotic. Where J is a regular chaotic?

Theorem 3. Let F = (A, C) is a finite chaotic. aseA is not a loop and for any set of capacities
V={vs, ..., Vg} (VV; =0) is the value of the maximum J-flow equivalent the minimum capacity
f™"(¢y) of ay, i.e.

P™() < f™"(ci).
The proof and the algorithm are found in [2].

4. Control Strategy against External Controller

4.1.

A field operator of the field SS Aisamap ¢ : S—— A. Let
Q A ==L A

is a law of the control for the chaotic H = (A : C;, ieN(n)). A strategy of a controller [i] is the field
operator

Vi G\ Co—> Q (Ci\ Cy), )
where Cy = (a0 : Q(a) = ) and Q (Cp) N C; = . The controller [i] will be considered to have a fixed

the strategy ;. Let a row string is

def
¥ = (W1, W2 eees W)
such that y; are the strategy (9). The multi map
Y A\ Cp ==t A (10)
is defined by requiring ‘¥ to be the field operator y; on C;\ Cy, i.e. ¥(a) = yi(a), where aeC; \ Cy .

Further let R = (iy, iy, ..., i;) are the index of an active controllers, P = N(N)\R = (j1, j2s ««s jnr)
are the index of an passive controllers for control-brigade

z={[1],... [l

Z=A{[id], . . ., [ir], [idd ---> [inel} = {Zr, Zp}. A multi map ¥ (10) is called a strategy of a control-
brigade Z.

Theorem 4. A strategy W is defined uniquely of the control for the chaotic H if C, be fixed.

Proof. The proof of the theorem 4 is similar.

4.2.
Suppose a row string
¥} ={vs, ..o wid

is a set traversed the control position (see (6)), where K is a depth of ditree T>. Further assume that a
row string

{¥3={V, ...V}
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other a set traversed the control position. We call the strategy ¥ preferable for a controller [i] of the
strategy ¥ ° if for VaeC; ¥ (e) occur ¥ *(a) (¥() 3= ¥'(a)) and is denoted by

{¥} =i {¥}. (11)
Theorem 5. The relation i (11) is a preference in a set of strategy of the control for the chaotic H.
The proof is straightforward.
The relation % (11) is called a strategy preference.
4.3.

A strategy preference s of controller [i] be written in terminology of penalty function
f: {{¥}} — R, where {{¥}} is the set all strategy (10).

" (W) = sup (fi(x) : x{\}) if [I]eZg, (12)

fo (W) = inf (fi(x) : x{¥}) if [ileZs. (13)
In terminology of penalty function the strategy preferance (11) is rephrased

f(P) > f(¥"). (14)

4.4,

Let i is an arbitrary strategy of a controller [i] and ¥ng is a control strategy ¥ without
strategy of the controller [i]. A strategy ¥* = {V,, ..., ¥} is called control strategy against
external controller [i] if

W* i (wi, Y Nepi ) (15)
where [i]leZ.

By (15) is meant the controller [i] there is nothing to
prevent of every remaining controllers.

Further a strategy W= is called a safety control strate-
gy if the strategy preference (15) be realized for all controller
[ileZ.

Finally a strategy ¥* is called a antiterrorist control
strategy if the strategy preference (15) be realized for all exte-
rior controller V[n+1]eZ, see figure 3.

The algorithms of construction safety&antiterrorist
control strategy for chaotic will be object of next paper.

5. Direct Algorithm of Passive Control on ZXZ
(Algorithm 2)

In sections 4-6 will be concerned of a problems control
with one passive controller [1],, position-set of control A c

Z.xZ., controlled chaotic H = (A, Q ), Q € 2%, This problem is | _ ] ]
well-know was named for the monitoring infecting zone [1] — |Figure 3. lvan Nevidomyj. The Penetration

[3].
Let the subset B € A is a beginning infected zone with a boundary L and L is a cycle curve

without an intersection. L is called a boundary zone B. 3 = (A, Q, B) is a beginning infect front.
Further, we may applicable the algorithm 1.

Suppose S(A) 2 A is a minimal sphere with the center Oa = (io,J0)€B,
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. A—> {+1, -1}, (16)
be the function that takes each two cells k = (ix,jx) and m = (im,jm) t0
1) m(k, m)=+1if fim—1io [> lik—io| OF [im = Jo [> Ik = Jo|;
2) m(k, m)=-1 on the other case.
S(A) is called a restriction sphere.
By definition the map (16) is a strategy of a controller [1]".
Correctly are the following theorem.

Theorem 6. [See 5]. Let a finite ground-set A € ZxZ is a restriction sphere S(A) is a finite ground-set
A and I' = (V, E) is a finite graph, where the vertex-set V = A and edge-set E = {e€B: e
e{v(i,j)eV: (i-1), (i,J-1), (i+1,j), (i,j+1)}}, N(I') is the inverse function for the algorithm 1 on
a graph I'. Then we have

N(T) = ZGM(EZ)—M(E;) , (17)

T

where E; to be the set of edges (d , r) of T such that nqm, =1 and E_ be the remaining edges of I, here

ngm, =1 if the diedge (d , r) is “ie—j”, 0 = €', here I is a number of the Algorithm 1 iterations and = is
strategy of controller (16).

Corollary 6.1. [See 9]. Suppose N° is an iteration number of algorithm 1 on graph I'; then
N° < p(N(T)).

Corollary 6.2.. The algorithm 1 on ZxZ has big com-
putability complexity.

6. Direct Algorithm of single-center infection on ZxZ
(Algorithm 3)

Suppose conditions of theorem 6 being satis-
fied. The subset B € A is a beginning infected zone
with the boundary zone L. Let L € B and the subset
A’ € A/IB € ZxZ are infection-screened cells.
Infection screened cells are marked the symbol “¥”,
see fig.5. The boundary zone B contains an infection
centre OxeB. Any cell ceB is called active

if {c} N L # O and the active cells are starting points
of algorithm 3. The cells

i = {(i+£0;1,j£01 =
(iL))}eA
are called neighbouring cells of cell (i,j)eA. Any cell

ceA/(B U A") is called a freedom cell (f-cell). For any |Figure 4. Salvatore Dali. The Pandemia
cells ¢, = (i,j), ¢2 = (k,1)€A there exists a distance

d(cs, €)= (i TK)Z TGN

Algorithm 3

(RI) We get L, = L.
(Z) An active cell meL is said to be initial if d(m, O,) — > min. LetC,, =

{m;, m,, ms} be the f-cells, where n(m; » m) = 2, and m* be the cell of C,, such that m* have

the maximal number n(m*) of neighbouring active cells. m* stand of the active cell. L; := Ly/{m}
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u{m*}. If m* not exist, then L;:=L;.
The rule (Z) by repeats n(L) — 1 time in the hour-hand direction.

If Ly # L, then L = L, we add to A" the new f-cell and go to (RI). Finally, if L, = L, then the
algorithm 3 is stop.

Example. In Fig.5 the new active cells are marked the sign “Il”, the active cells are marked the sign
“x” and the f-cells are shown as “¥”.
Theorem 7. [See 9]. The algorithm 3 has the computation complexity O(m?), where m = p(L).

Corollary 7.1. The algorithm 3 is effective to solution of real problems for computational viral exten-
sion.

Corollary 7.2. Let B = O = L; then P=n_/n, ®0.57, where n, is the number of the new active

cells and n¢ is the number of the f-cells. Using the algorithm 3 computa-tional experiments we
obtain n, and n;.

vV |©v v A4 \4
v v |V
M H N v
v A4
X
v
L/ A v v
v /™ ar
'.x ] \4
v xBL x.' v
H M
vV V. v |V v
v v A4 A4
v |V viv
v v |V A4
Figure 5.

Hypothesis. The number P is a critical probability, see (4), of single-center infection on ZxZ.

7. Inverse Algorithm of Single-Center Infection

Suppose conditions of section 6 being satisfied. Let we have B = O, = L of an initial infec-
tion. Furthermore, B* €A is an infected zone before starting inverse algorithm.

Let H € A/ B* is fixed subset of f-cells.

Theorem 8. Let A € ZxZ is finite the ground-set, S(A) is a a restriction sphere, and = is function (16).
Further, let T = (V, E) is a finite graph, where the vertex-set V = A and edge-set E = {eeB: ¢
e{Vv(i,j)eV: (i-1), (i,j-1), (i+1,j), (i,j+1)}}, N(I') is the inverse function for the Algorithm 3 on
a graph I'. Then we have
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N (I) = (6 +67) x N (P'c{e}) - 07 x N ('+{e}), (18)

where T'c{e} be the graph obtained by deleting an edge e from I', I'+{e} be the graph obtained
by deleting an edge e and then identifying its end points, ® = €', here | is a number of the Al-
gorithm 3 iterations.

Theorem 9.

I* < (w(A) —1(H))*,
where I* is a number of the Algorithm 4 iterations. A is a groundset and H is the subset of all
protected cells.
Our main result is the following.

Theorem 10. There exist the algorithm 4 of effective solution of the inverse problems for computa-
tional viral extension.

The proof theorems 4-6 are in [7]-[12] and the algorithm 4 listing is in [9].
Corollary 10.1. Using Algorithm 4, we get the coordinates:

OA = (iO 1j0)1 (19)
where O, is an infection center.

Remark. The coordinates (19) are a dream of antiterrorist organizations.
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I'pumcax-I pénep B.B., [ pumcak-I pénep FO.
Crtparernyeckoe ynpasjeHue XaocoM U 00paTHbIE 3a1a4M

MBI posiosKaeM BBOJUTH HOBBIE MOHATHUS KOHTPOJIS M YIPaBJIEHUS XaocoM. MBI BBOAUM, TaKkxKe NMOHITUE CTpa-
TEruH YIPaBJICHHUSI XaOTHUYECKUMHU CTPYKTypaMu. B paznene 2 nan kpatkuit 0030p cTaHIapTHBIX (AKTOB O KOH-
TpoJie XaoTHUKOB. B paszene 3 mMbl JaéM HekoTopble Oa3ucHBIE (akThl O KOHTpoOJie (YIpaBICHUH) XaOTHYHBIX
MOTOKOB co mTpadHoil GpyHknueil. B pazaene 4 Mbpl CHOBa BBOJMM HOBBIC ITOHSATHS CTPATETHU KOHTPOJIIS, KOTO-
pBI€ TIO3BOJISIOT MOJHOCTHIO KOHTPOJIMPOBATh XA0C, AK€ B CHTYalMAX, KOTAa OAWH U3 KOHTPOJIEPOB U3 Opura-
Il KOHTPOJEPOB NpENaTeIbCKU HAYMHAET MEHATh CBOIO CTPATETHIO MM, OOJee TOro, MOSABISIETCS OAWH M3
BHEIITHUX KOHTPOJIEPOB €O cBOei cTpaTerneil. B o0onx ciryuasx, Hala cTpaTerys HE MO3BOIACT MPEAATEII0 HITH
TEpPOPUCTY (TaK, ECTECTBCHHO MBI Ha3bIBAEM 3THX KOHTPOJIEPOB) MOIYIUTh, KaKylO-HHOYIb BEIroay. Jlambiie, B
paszene 5, MBI paccMaTpUBacM KOHKPETHBIHN CiTydaif KOHTPOJIIS, KOTJja MHOKECTBO KOHTPOJIS HMEET KOOPIHHAT-
HYIO [IEJIOYHUCIICHHYIO CeTKy A C ZXZ W y Hac OJIUH NaCCUBHBIN KOHTPONEpP. 3aada KOHTPOJIA Xa0ca, HECMOTPs
Ha OrpaHUYEHMs, JOBOJIBHO PacIpOCTpaHeHHasd. B qpyroit TepMHHOIOTMHN OHa Ha3bIBaeTCs 3a7adel MOHUTOPHUH-
ra Ha KOOpJIUHATHOW ceTke. Hampumep, k TakMM OTHOCHUTCS MOHHTOPUHT PAacCIpOCTPaHEHUs BUPYCHOH 3muje-
MUH WK PACIpOCTPaHEHHs MTOCIEACTBII CTUXHUIHHOTO OE/ICTBHS WIIM TEXHOTeHHOW KaTacTpodbl. B pa3nenax 5-
7 MBI €€ TONHOCTBIO AITOPUTMUYECKH penraeM. B cexunu 5 Mbl MpUBOAMM NPSIMOM anropuTM e€ penieHus. B
paszene 6 IPUBOANTCS aITOPHUTM PEIICHMS B CIydae M3BECTHOTO LIEHTPA pacmpocTpaHeHus xaoca. (Hampuwmep,
JUTSL PacTIpOCTPaHEHMS HYKINAOB U3 UepHOOBUILCKOM aTOMHOH 3J1eKTpocTaHum). B obonx ciyuasx npegycmat-
pHBaeTCs CTpaTerus NMPOTHH BMENIATENBCTBA IMpeaaTeneil u TeppopuctoB. Hakorer B paszene 7 MpUBOIUTCS
3HAMEHHUTHIH aJTOPUTM, MPUHAICKAIINA IEPBOMY aBTOPY, PELICHHsI 0OpaTHOW 3a1aun MOHUTOpHUHTA. J[pyru-
MH CJIOBaM, BEIYHCIISIOTCS] KOOPIMHATHI ICHTPA PAaCTIPOCTPAHCHHUS OC/IBI.
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