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We continue grinding wooden graphic-theory for own needs, which we started in the
first paper of this series. In this article we will assume that the graph is connected. We
construct a minimum forest consisting of the union of the minimal spanning trees of its
connected components. Because of its importance in operational research and in data analysis,
many algorithms have been proposed for constructing a minimal spanning tree of a valued
graph.
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1. Introduction

Commentary. As we have already noted in the
previous article, in the future, to study the cluster struc-
ture is sufficient to consider and examine only their con-
nected components are trees, and then successively to
each connectivity component of the bush to apply the ob-
tained results.

The main idea MIVI is the following. We take
the coding graphs I' (encoding algorithm graph is pre-
sented in the previous article in this series), which is rep-
resenting a certain visual information, such as image of
the painting GD. Compute a minimum spanning tree I'° of
the graph I' (an algorithm for computing the minimum
spanning tree of a graph is presented in this article of the
series). Further to the tree I'® calculate its needles {ir} and
body B. Needles are the maximum subtrees of I'* with all
points, except for two points of v(ir) and o(ir), with de-
gree equal to two: st(v(ir)) =1. v(ir) is the top of the nee-
dle ir, and st(o(ir)) > 1 (o(ir) is the basis of a needle ir.
The body B is the remaining part of the tree I'°. Thus, we
turn our tree I'® to the hedgehog

I(B) = (Ba{ir}): (1)

or G-invariant of graph I.

Fig. 1. A. Fomenko “A hedgehog”

If we calculate all the hedgehogs I(I'), 1 = I,_n for all n spanning trees of the graph I'', the fol-
lowing hypothesis seems to be true.

Hypothesis. The collection of all hedgehogs
L(I),i=1n, @)

is a complete system of invariants of a plane graph I

If we assume the validity of the above hypothesis, and that the graph I' for IVI picture, obvi-
ously, is flat, we can assume that the hedgehog (1) is a certain individual characteristic of pattern G.

The same goes for IVI of face, that actually (topologically!) is a flat pattern, the hedgehog (1)
is an individual invariant.

Finally, for graphs IVI of any stereo FA the hedgehog (1) is probably not enough to the quali-
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tative identification of the image. Then, we need to calculate all the hedgehogs (2), or even all the
hedgehogs of all components of a manifolds M, representing the flat surface of the stereo image FA.

2. More about the graphs
At first, there are a few necessary approvals.

Theorem 1. Let

I'=(V,E), ECVxV 3)
be a graph. The following two assertions are equivalent:

(a) I'' is connected.
(b) T has a partial graph which is a tree.

Proof. (a) implies (b). We construct a sequence I' = Iy, I'y,..., ', of partial graphs of I' defined as fol-
lows: I'; is a connected graph obtained by removing one edge from

I';.;. Because of the finiteness of I' graph, we eventually come to a tree I',.. In an extreme
case, I',. will be the usual edge. The converse is obvious, even more.

When the partial graph H of T is a tree, we say that H is a tree of I'. If H is a tree of a sub-
graph of I" we say that H is a partial sub-tree of I'. Now consider a connected valued G. The length
dLy of a tree H of I is defined to be the sum of the lengths of the edges of H. A tree H of I' such that
dLy is a minimum is called a minimal spanning tree of I'. Before indicating a solution, we will show
that when the lengths of the edges are all different this tree is unique.

Theorem 2. Let G = (V, E) be a connected graph valued by an injective edge’s function &

g : E-R*. 4)
Then the minimum spanning tree T of (G, &) is unique.
Proof. Let T; and T, be two distinct minimal spanning trees of G. Let U be the set whose elements are
the edges of Ty which are not edges of T, and the edges of T, which are not edges of T;. Let (uv) be
the edge of U (unique because of the injectivity of &) of smallest length. Assume that (uv) is an edge
of T. In T, the vertices u and v are joined by a path:

u=ugl...u,=V.
Since T; is acyclic and since (uv) is an edge of T, at least one of the edges in this path is in U. If &
(wjui) < 4 (uv), for all i, 0 £i <m — 1, then 4 (uv) is not minimal in U. Thus, there exists an edge

(ujuj4) in (3) such that 4 (wu;+) > & (uv) . Now consider the partial graph Tz of G obtained from T,

by removing the edge (u;u;+) and adding the edge (uv). Tj; is clearly connected. Moreover, it has no
cycle not containing (uv) (for this would be a cycle of T,) and every cycle of T; containing (uv) would
define a cycle of T, by using the path (3). Thus T, is a tree of G and, by construction,

F(T3) =4 (T2) + 4 (uv) - £ (wiuirg) < & (T2)

which contradicts the minimality of T5.

3. The idea of the algorithm

It is an example of a greet-algorithm, see 5.algorithm 2, which operates on an ordered list of
edges G given in order of increasing length. The greet-algorithm is an approximation algorithm com-
putes a spanning tree for very large graphs. The two smallest edges necessarily occur in the minimal
tree. At each stage, we consider the next edge. If it does not create a cycle, we add this edge to the tree,
otherwise we pass on to the next step. The greet-algorithm stops when all the vertices have been in-
cluded. This procedure is particularly simple to implement because an edge does not create a cycle
unless its two end-points belong to the same connected component. It therefore suffices for each edge
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remaining to ascertain the number of the connected component corresponding to each endpoint. Since
we examine at most n(n—1)/2 edges (the number of edges in a complete graph), the complexity of

this algorithm is O(n*) once the values of the edges have been arranged in order of increasing value.
But this preliminary procedure, if it is not required for other analyses, is rather lengthy and more rapid
algorithms are known. In any case we will encounter it again when we present the algorithm for enu-
merating the connected components of the threshold graphs of a complete valued graph.

4. G-trees (Hedgehogs)
Let T=(V, E) be a tree, for example obtained by greet-algorithm. A needle b of the tree T is

a subtree V = (V}, Ep, V, c V, E; c E, in which all the vertices V| / {v(l) , o(l)} have a degree equal to

two, st(v(p)) =1, st(o(t)) > 1. A vertex v(b) is called the edge (or top), and a vertex o(}) is called a nest
of needle |. A needle | is double-edged, if st(o(})) = 1. A sharpening of needle I, denoted as I, is a
subgraph, which coincides with | on all edges and vertices except the nest, o('t) = 1. The body of the

tree T is a subgraph Z(T), which removed all the sharpenings of all its needles. Suppose that the set

{%;}, jeJ is the set of all the sharpenings of the tree T. Then the pair

I(B) = (B(T),{Y}, jeJ), )
is called the hedgehog of the tree T.

In the rest of this article we will consider trees (valued or not) some of whose vertices (called
real vertices) are labelled and some of which (called latent vertices) are not. The 'labels' are elements
of a set X which is fixed once and for all. The idea is that, taking account of the data relating to the
real vertices, the latent vertices play the role of 'intermediary' vertices which are required to obtain a
tree structure. Before proceeding further we will indicate a number of situations in which one encoun-
ters this requirement.

Let T = (V, E) be a tree. Further, Dy, denote the length of the longest edge v* plus 1. At each
iteration we simply adjoin a vertex outside the tree T (the nearest) and update the distances of the out-
side vertices from the tree T. This is implemented by a very simple data structure: we use two arrays

N and 3 of dimension n. If the vertex v is in the tree, 8(v) is the number of the vertex to which v has
been previously attached, and J(v) = Dyay, otherwise T(v) is the tree vertex closest to v and 3(v) is the

length of the edge v -&(v). At each iteration,we look for a vertex w such that J (w) is minimal and we
add this vertex to the tree. We then assign V(w) = Draax. Then for each vertex s outside the tree (for

which 3 (s) < Dpay , We compare its distance from the previous tree to the length of s — w. If the latter

length is smaller, we put X(s) = w and equate 3 (s) to this length.
Initially the last vertex n is the only one located in the tree, and it is therefore the closest ver-

tex to all the others. At each iteration we scan the array & of dimension n and we adjoin one vertex

and one edge. After n — 1 iterations, the n — i edges in the tree are v — &(v). This algorithm has com-
plexity O(n?). The minimal spanning tree can be stored using a file structure which is found in all of
our programs. Among other things, this allows us to draw it using the methods for drawing trees that
we will meet in other part of article.

Examples 1

We are concerned here with the problem of grouping the elements of a set X into homogene-
ous classes according to certain criteria. This set may be structured in various ways: by the observa-
tion or calculation of measures of proximity among its elements, using values taken by one or several
variables etc. In the hierarchical model the classes so formed may be compared by order of inclusion
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and two incomparable classes are always disjoint. The classes can be located at the nodes of a tree
whose edges represent direct comparisons in order of inclusion. The leaves of this tree are occupied by
the individuals that we wish to classify (i.e. the elements of X or the species): lion, cheetah.... The
nodes (i.e. the classes, orders, families and genders) therefore arise as intermediaries which are neces-
sary to obtain a tree classification of X.

Examples 2

The biological literature abounds in phylogenetic trees of extremely varied types. We will on-
ly mention non-rooted trees. Figure 2 exhibits two simplified examples. Here X is the set {man, chim-
panzee, gorilla, gibbon, orangutan}. Each of
these trees interprets an evolutionary hypothesis. O
We remark that they differ from classificatory
trees in two respects: while the tree in examples
1, in a natural manner, from bottom to top (cor-
responding to inclusion between classes) no di-
rectional reading is assumed a priori in phyloge-
netic trees (such a direction, if it were given,
would indicate a hypothesis about the direction
of evolution). On the other hand, in classifica-
tion trees it is only the leaves which are labeled
(since they represent the objects to be classified
while the nodes correspond to the classes ob-
tained). In phylogenetic trees, although the
leaves are still labeled, some nodes may repre-
sent some known common ancestors. We re- ‘
mark that this type of tree is not the exclusive man O O chimpanze
preserve of naturalists, it is also used in other
domains, such as the filing of manuscripts, the |Fig. 2.
psychology of memory etc.

gibbon

Examples 3

An additive tree is a tree of the phylogenetic type whose edges are valued. They correspond
to the following problem: given a set X and an index of proximity 5 on X, determine a valued tree,
whose set of leaves is contained in X, such that the length of the paths joining two elements of X con-
stitute a 'good approximation' to 5. The real vertices are the elements of X; the latent vertices corre-
spond to the nodes which need to be added in order to obtain the 'best possible' approximation. After
being used in Operational Research and the Analysis of Information, the utilisation of these trees was
revivified by Mathematical Psychology. Indeed, they supply a method for analysing and representing
similarities in accordance with structured hypotheses (e.g. about memory organization and certain
types of representations of the universe of knowledge) concerning the objects between which these
similarities are evaluated. For a similar reason (evolutionary hypotheses) they are commonly used in
'systematic biology'. Picture 1 represents an 'additive' tree calculated on the basis of similarity data
perceived between various perceivable.

Examples 4

These correspond originally to the following problem: given n points in the arline plane, find a
tree of minimal length containing all these points. Figure 3 shows a simple example of a Steiner tree
on three points. The real vertices are the n initial points, the latent vertices are those which it is neces-
sary to add in order to obtain a tree of minimal length. This problem has many variants, for example
the Steiner problem in a graph: given a valued graph (G, L) and a set X of vertices of G (the real verti-
ces), determine a partial subtree of G whose vertices contain X and whose length is minimal. We re-
mark that in a Steiner tree, each leaf is a real vertex.
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Fig. 3.

Let O be a finite set (discrete graph!) and T = (V, E), D = (V;, E,) are trees. I(B) = (%(T) ,
{%}, jeJ ) is hedgehog nepesa T. A simple O-hedgehog T (we will simply say — O-hedgehog, or a
hedgehog, if clearly defined O, although in the future, the term O-hedgehog will mean a generaliza-
tion, when O is an arbitrary finite graph) is a triple

Pa(T)= (T, H, O) (©)
formed by a tree T and a homomorphism H from O to T
H:0=T )
such that H(Q) are isomorphic to Q2
HO)=Q (®)
where Q = U b .

jeJ
The homomorphism H is the labeling of the Pu(T). The vertices in H(O) are called real verti-
ces and the vertices in V - H(O) are called latent vertices.
Two O-hedgehog Pu(T) and Pg(D) are isomorphic < if there exists a bijection ¢ from V to
Vi

P:V—-V, ©)
such that:
(i) an edge <vu> € V & ¢ (v)o(u) € Vy;

(i)e-H=Q
“o” {s composition of maps.

Thus two isomorphic hedgehog only differ in the 'names' given to the latent vertices; in the
following we will consider them to be equal.

We distinguish between different types of O-hedgehog Pr(T) according to the nature of the
function H. When H(O) is the set of leaves of T, we say that the O- hedgehog Pgu(T) is free. When H
(O) is the set V of all vertices of T (i.e. when H is surjective), we say that Pu(T) is constrained. When
the homomorphism H is injective (i.e. when there is no multiple labeling), we say that hedgehog Pu(T)
is separated.

For example, the O-hedgehog in Figure 1 is separated, O-hedgehog in Figure 1 is free.

A separated, constrained O- hedgehog Pu(T) may simply be identified with a tree. When there
is no ambiguity we may simply denote the Pu(T) by T.

where

6. Algorithm 2

The algorithm implemented below is a recursive procedure (greet-algorithm) due to
V. V. Gritsak (1980). We start with a tree consisting of a single vertex and we adjoin the nearest
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neighbour to this vertex (and the edge which joins them). This subtree with two vertices is minimal.
Now, if we have a minimal partial subtree and if we add to it an edge, with one endpoint in the tree
and one endpoint outside it, and if this edge is minimal in the set of edges having this property, we
obtain another minimal sub-tree. It is easy to show that the minimal spanning tree is obtained after n—i
iterations.

10 INPUT "File name";NS : NN$=N$.".DIS"

20 OPEN "I"#IN[J : INPUT #1,N :INPUT #1,N2

30 DIM D(N2) ,T%(N) ,V(N) ,L(N)

40 Ni=N-1: FOR I=l TO N2 : INPUT $1,D(I)

50 IF D(I)>DMAX THEN DMAX=D(I)

60 NEXT 1: CLOSE #1 : DMAX=DMAX+i

100 PRINT " separate vertex";NS : PRINT : PRINT .... ;
110 FOR I=1 TO N1 : PRINT USING "####..;I; : NEXT I : PRINT : PRINT
120 FOR J=2 TO N : PRINT USING "##";J; : pRINT ..... ;
130 FOR I=1 TO J-1 : GOSUB 2120

140 PRINT USING "###.#";D(P); : NEXT I : PRINT

150 NEXT J : PRINT

500 REM The main algorithm

510 J=N: FOR I=1 TO N1 : T%(I)=N : GOSUB 2120

520 V(I)=D(P) : NEXT I : T%(N)=0 : SOM=0

530 FOR ITER=I TO N1 : DMIN=DMAX

540 FOR K=i TO N1 : IF V(K)<DMIN THEN DMIN=V(K) : MIN=K
550 NEXT K : V(MIN)=DMAX : SC[14=SC[14+DMIN : L(MIN)=DMIN
600 REM received a neighborhood tree

610 FOR K=1 TO N1 : IF V(K)=DMAX THEN 640

620 1=K : J=MIN : GosUB 2110

630 IF D(P)<V(K) THEN T%(K)=MIN : V(K)=D(P)

640 NEXT K : NEXT ITER

700 PRINT " Minimal spanning tree " : PRINT

710 FOR I=1 TO N1 : PRINT "Edge ";I; ...... ;T%(D);

720 PRINT " length ";L(I) : NEXT I : PRINT

730 PRINT " the sum of the lengths of edges ";Sfl 14

740 PRINT : GOSUB 3400 : END

2100 REM P := (L))

2110 IF I>J TUEN SS$[1%P L1,J

2120 P=(I-1)*(N-1/2)+J-1 : RETURN

3400 INPUT " You get a tree (Y/N) ";CS

3405 IF C$<>"Y" THEN RETURN

3410 INPUT " File name ";NS : NS=NS+".ARB"

3420 OPEN "O"#1,N$ : PRINT #1,N : FOR I=1 TON1
3430 PRINT #L,1 : PRINT #1,T%(I) : PRINT #i,L(I)

3440 NEXT I : CLOSE #1 : RETURN

Cmamvws nocmynuna 6 pedaxyuio 24.06.2011 .

I'pumcax-I pénep B. B., I pumcax-I pénep 0.
MaremaTudecKkue MeTOAbl HACHTU(UKAIUY BU3yaJIbHOI HHGoOpManuu. 2.

Msr ipogormkaeM nurdoBaHuEe TeOpHU rpadoB-IepEeBLEB, HAYATOE B TIEPBOM CTaThe ITOH cepuu. B 3Toif craThe
MbI OyzieM cuuTarh, 4To rpad cBs3HbIA. [locTpoUM MHHUMANBHBIH Jiec, COCTOSIMNA O0bEANHEHUS] MUHHUMAIIb-
HBIX OCTOBHBIX JIEPEBbEB €TI0 CBA3HBIX KOMIOHEHT. V3-32 BaKHOCTH 3THUX MOHITHH B MCCIEIOBAHUSIX ONEpaIlHi
U U aHaJIn3a JaHHBIX, MPEIAIOKCHBI aJITOPUTMBL I TOCTPOCHUSA MUHHUMAJIbHOTO OCTOBHOI'O JICPEBA B3BCIICH-
HOro rpada.

Kniouegvie cnosa: rpad, nsodpaxenue, Bu3yasibHas uHGopmarus.
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