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tative identification of the image. Then, we need to calculate all the hedgehogs (2), or even all the 
hedgehogs of all components of a manifolds Ϻ, representing the flat surface of the stereo image Ѩ. 

2. More about the graphs 

At first, there are a few necessary approvals. 

Theorem 1. Let  

Γ = (V, E), E  V V (3) 
be a graph. The following two assertions are equivalent:  

(а) Γ is connected.  
(b) Γ has a partial graph which is a tree.  

Proof. (a) implies (b). We construct a sequence Γ = Γ0, Γ1,..., Γm of partial graphs of Γ defined as fol-
lows: Γi is a connected graph obtained by removing one edge from  

Γi-1. Because of the finiteness of Γ graph, we eventually come to a tree Γm.. In an extreme 
case, Γm. will be the usual edge. The converse is obvious, even more.  

When the partial graph H of Γ is a tree, we say that H is a tree of Γ. If H is a tree of a sub-
graph of Γ we say that H is a partial sub-tree of Γ. Now consider a connected valued G. The length 
dLH of a tree H of Γ is defined to be the sum of the lengths of the edges of H. A tree H of Γ such that 
dLH is a minimum is called a minimal spanning tree of Γ. Before indicating a solution, we will show 
that when the lengths of the edges are all different this tree is unique. 

Theorem 2. Let G = (V, E) be a connected graph valued by an injective edge’s function ℐ  

ℐ : E→ℝ+ . (4) 

Then the minimum spanning tree T of (G, ℐ) is unique.  

Proof. Let T1 and T2 be two distinct minimal spanning trees of G. Let U be the set whose elements are 
the edges of T1 which are not edges of T2 and the edges of T2 which are not edges of T1. Let (uv) be 
the edge of U (unique because of the injectivity of ℐ) of smallest length. Assume that (uv) is an edge 
of T1. In T2 the vertices u and v are joined by a path: 

u = u0ul . . .um = v.  

Since T1 is acyclic and since (uv) is an edge of T1, at least one of the edges in this path is in U. If ℐ 

(uiui+1) < ℐ (uv), for all i, 0 ≤ i ≤ m – 1, then ℐ (uv) is not minimal in U. Thus, there exists an edge 

(uiui+1) in (3) such that ℐ (uiui+1) > ℐ (uv) . Now consider the partial graph T3 of G obtained from T2 
by removing the edge (uiui+1) and adding the edge (uv). T3 is clearly connected. Moreover, it has no 
cycle not containing (uv) (for this would be a cycle of T2) and every cycle of T3 containing (uv) would 
define a cycle of T2 by using the path (3). Thus T2 is a tree of G and, by construction, 

ℐ (T3) = ℐ (T2) + ℐ (uv) - ℐ (uiui+1) < ℐ (T2)  

which contradicts the minimality of T2.  

3. The idea of the algorithm 

It is an example of a greet-algorithm, see 5.algorithm 2, which operates on an ordered list of 
edges G given in order of increasing length. The greet-algorithm is an approximation algorithm com-
putes a spanning tree for very large graphs. The two smallest edges necessarily occur in the minimal 
tree. At each stage, we consider the next edge. If it does not create a cycle, we add this edge to the tree, 
otherwise we pass on to the next step. The greet-algorithm stops when all the vertices have been in-
cluded. This procedure is particularly simple to implement because an edge does not create a cycle 
unless its two end-points belong to the same connected component. It therefore suffices for each edge 
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remaining to ascertain the number of the connected component corresponding to each endpoint. Since 
we examine at most ( 1) / 2n n  edges (the number of edges in a complete graph), the complexity of 
this algorithm is O(n2) once the values of the edges have been arranged in order of increasing value. 
But this preliminary procedure, if it is not required for other analyses, is rather lengthy and more rapid 
algorithms are known. In any case we will encounter it again when we present the algorithm for enu-
merating the connected components of the threshold graphs of a complete valued graph.  

4. G-trees (Hedgehogs) 

Let T = (V , E) be a tree, for example obtained by greet-algorithm. A needle I of the tree T is 

a subtree I = (VI , EI), VI  V, EI  E, in which all the vertices VI
 

v(I) , o(I)  have a degree equal to 

two, st(v(I)) =1, st(o(I)) ≥ 1. A vertex v(I) is called the edge (or top), and a vertex o(I) is called a nest 
of needle I. A needle I is double-edged, if st(o(I)) = 1. A sharpening of needle I, denoted as I°, is a 
subgraph, which coincides with I on all edges and vertices except the nest, o(°I) = 1. The body of the 
tree T is a subgraph ℬ(T), which removed all the sharpenings of all its needles. Suppose that the set 

{°Ij}, j J  is the set of all the sharpenings of the tree T. Then the pair 

I(B) = (ℬ(T),{°Ij}, j J ),  (5) 

is called the hedgehog of the tree T. 

In the rest of this article we will consider trees (valued or not) some of whose vertices (called 
real vertices) are labelled and some of which (called latent vertices) are not. The 'labels' are elements 
of a set X which is fixed once and for all. The idea is that, taking account of the data relating to the 
real vertices, the latent vertices play the role of 'intermediary' vertices which are required to obtain a 
tree structure. Before proceeding further we will indicate a number of situations in which one encoun-
ters this requirement.  

Let T = (V, E) be a tree. Further, Dmax denote the length of the longest edge v* plus 1. At each 
iteration we simply adjoin a vertex outside the tree T (the nearest) and update the distances of the out-
side vertices from the tree T. This is implemented by a very simple data structure: we use two arrays 

 and  of dimension n. If the vertex v is in the tree, (v) is the number of the vertex to which v has 

been previously attached, and (v) = Dmax, otherwise T(v) is the tree vertex closest to v and (v) is the 

length of the edge v - (v). At each iteration,we look for a vertex w such that  (w) is minimal and we 
add this vertex to the tree. We then assign V(w) = Draax. Then for each vertex s outside the tree (for 

which  (s) < Dmax , we compare its distance from the previous tree to the length of s – w. If the latter 

length is smaller, we put (s) = w and equate  (s) to this length.  
Initially the last vertex n is the only one located in the tree, and it is therefore the closest ver-

tex to all the others. At each iteration we scan the array  of dimension n and we adjoin one vertex 

and one edge. After n – 1 iterations, the n – i edges in the tree are v – (v). This algorithm has com-
plexity O(n2). The minimal spanning tree can be stored using a file structure which is found in all of 
our programs. Among other things, this allows us to draw it using the methods for drawing trees that 
we will meet in other part of article.  

Examples 1 

We are concerned here with the problem of grouping the elements of a set X into homogene-
ous classes according to certain criteria. This set may be structured in various ways: by the observa-
tion or calculation of measures of proximity among its elements, using values taken by one or several 
variables etc. In the hierarchical model the classes so formed may be compared by order of inclusion 
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neighbour to this vertex (and the edge which joins them). This subtree with two vertices is minimal. 
Now, if we have a minimal partial subtree and if we add to it an edge, with one endpoint in the tree 
and one endpoint outside it, and if this edge is minimal in the set of edges having this property, we 
obtain another minimal sub-tree. It is easy to show that the minimal spanning tree is obtained after n–i 
iterations. 
10 INPUT "File name";NS : NN$=N$.".DIS"  
20 OPEN "I",#I,N� : INPUT #1,N :INPUT #1,N2  
30 DIM D(N2) ,T%(N) ,V(N) ,L(N)  
40 Ni=N-1 : FOR I=l TO N2 : INPUT $1,D(I)  
50 IF D(I)>DMAX THEN DMAX=D(I)  
60 NEXT I : CLOSE #1 : DMAX=DMAX+i  
100 PRINT " separate vertex";NS : PRINT : PRINT .... ;  
110 FOR I=l TO N1 : PRINT USING "####..;I; : NEXT I : PRINT : PRINT  
120 FOR J=2 TO N : PRINT USING "##";J; : pRINT ..... ;  
130 FOR I=l TO J-1 : GOSUB 2120  
140 PRINT USING "###.#";D(P); : NEXT I : PRINT  
150 NEXT J : PRINT  
500 REM  The main algorithm 
510 J=N : FOR I=1 TO N1 : T%(I)=N : GOSUB 2120  
520 V(I)=D(P) : NEXT I : T%(N)=0 : SOM=0  
530 FOR ITER=I TO N1 : DMIN=DMAX  
540 FOR K=i TO N1 : IF V(K)<DMIN THEN DMIN=V(K) : MIN=K  
550 NEXT K : V(MIN)=DMAX : SC�4=SC�4+DMIN : L(MIN)=DMIN  
600 REM received a neighborhood tree 
610 FOR K=i TO N1 : IF V(K)=DMAX THEN 640  
620 I=K : J=MIN : GosUB 2110  
630 IF D(P)<V(K) THEN T%(K)=MIN : V(K)=D(P)  
640 NEXT K : NEXT ITER  
700 PRINT " Minimal spanning tree " : PRINT  
710 FOR I=1 TO N1 : PRINT "Edge ";I; ...... ;T%(I);  
720 PRINT " length ";L(I) : NEXT I : PRINT  
730 PRINT " the sum of the lengths of edges ";Sf�4  
740 PRINT : GOSUB 3400 : END  
2100 REM P := (I,J)  
2110 IF I>J T�EN S$�%P I,J  
2120 P=(I-1)*(N-I/2)+J-I : RETURN  
3400 INPUT " You get a tree (Y/N) ";CS  
3405 IF C$<>"Y" THEN RETURN  
3410 INPUT " File name ";NS : NS=NS+".ARB"  
3420 OPEN "O",#1,N$ : PRINT #1,N : FOR I=1 TON1  
3430 PRINT #l,I : PRINT #1,T%(I) : PRINT #i,L(I)  
3440 NEXT I : CLOSE #1 : RETURN 
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Гритсак-Грёнер В. В., Гритсак-Грёнер Ю. 
Математические методы идентификации визуальной информации. 2. 

Мы продолжаем шлифование теории графов-деревьев, начатое в первой статье этой серии. В этой статье 
мы будем считать, что граф связный. Построим минимальный лес, состоящий объединения минималь-
ных остовных деревьев его связных компонент. Из-за важности этих понятий в исследованиях операций 
и для анализа данных, предложены алгоритмы для построения минимального остовного дерева взвешен-
ного графа. 

Ключевые слова: граф, изображение, визуальная информация. 


