Гипотезы

УДК 539, 544

Одинокин А. С.

СТРУКТУРА АТОМОВ В ТАБЛИЧНОЙ ТЕОРИИ

346116, Россия, Ростовская обл., Миллеровский район, слобода Волошино, ул. Украинская, 60.

Анализ изменчивости отношения $\hbar c / e^2$, т.е. функций вида $P_{in} = \hbar c / (e^2 \cdot n^2 \cdot 2^{\pi^{(i-1)}})$ выявил скрытую индексовую периодичность. В системе атомных (индексовых) координат, благодаря обнаруженной периодичности, получен мощный

(индексовых) координат, благодаря обнаруженной периодичности, получен мощный численно-группой аппарат в виде периодических таблиц. Эти таблицы легли в основу табличной теории, новой зарождающейся теории микромира. Получены также ключевые экспериментальные значения первых энергий ионизации нейтральных атомов (ЭВ): 13,6; 24,6; 5,4; 9,3; 8,3; 11,3; 14,5; 13,6; 17,4; 21,6.

Ключевые слова: атом, электрон, протон, орбиталь, приведенная масса, энергия ионизации, электронный слой, порядковый номер элемента, электронное заполнение атома, табличная теория, атомные (индексовые) координаты, константа протонной и электронной орбитали, электронная функция, протонное управление, валентная пара.

1. Введение

По современным представлениям положение частицы в реальном пространстве в данный момент времени определяется заданием волновой функции, вид которой задает уравнение Шредингера. Решая уравнение, попытались найти структуры атомов. На практике оказалось, что решение уравнения возможно только для атома водорода. Решение для многоэлектронных атомов (два и более электрона) достигается только приближенными методами, где очень велика вероятность впасть в ошибку. Физическая периодичность энергий ионизации и радиусов в уравнении Шредингера игнорируется. Указанная периодичность не находит объяснения и в систематике электронного заполнения атомов на основе принципа Паули.

В настоящей работе покажем, как можно иначе решить проблему атомной структуры. Перечислим ключевые результаты работы.

Раздел 2 посвящен центральной идее работы — открытию метрической симметрии вакуума в виде периодических таблиц. Известно, что функция двух переменных может быть представлена формулой, просто таблицей, пространственным графиком, способом пометок. В разделе показано, что упоминаемая функция представима периодической таблицей. Это уже качественно иное представление, так как где периодичность — там симметрия, которая в той или иной форме является структурной основой не только микромира, но мира живого и неживого вообще.

В разделе 3 показана физическая состоятельность периодических таблиц в атомном мире. Таблицы констант и Периодическая система элементов — как слепки друг с друга. В самом деле, в Системе Менделеева атомы расставлены по семи периодам. Первые три — малые периоды. Таблица P_{in} — чисел также состоит из семи периодов, первые три из них — неполные. Такое совпадение удивительно. В разделе найдены зависимости для энергий ионизации и попутно структуры атомов первых десяти элементов.

В заключении перечислены некоторые физические направления, в которых периодические таблицы могут быть востребованы в той или иной форме.

2. Периодические таблицы

Вакуум имеет дискретную структуру по крайней мере в объеме атома и его окрестностях. Применительно к вакууму в системе с двумя координатами (индексами) запишем дифференциальные уравнения:

№ 4, 2009 **47**

$$-\frac{1}{\ln 2^{\pi}} \frac{\partial P_{in}}{\partial i} = -\frac{n}{2} \frac{\partial P_{in}}{\partial n}, -\frac{1}{\ln 2^{\pi}} \frac{\partial E_{in}}{\partial i} = \frac{n}{2} \frac{\partial E_{in}}{\partial n},$$

$$\frac{1}{\ln 2^{\pi}} \frac{\partial N_{in}}{\partial i} = -\frac{n}{2} \frac{\partial N_{in}}{\partial n}, \frac{1}{\ln 2^{\pi}} \frac{\partial B_{in}}{\partial i} = -\frac{n}{2} \frac{\partial B_{in}}{\partial n},$$
(1)

где P_{in} , E_{in} , N_{in} , B_{in} — уровни вакуума

Будем искать функции, удовлетворяющие дифференциальным уравнениям в виде про- изведения двух функций, каждая из которых зависит от одной переменной. Например,

$$E_{in}=E_{i}E_{n}$$
 . Тогда $\frac{\partial E_{in}}{\partial i}=E_{i}^{'}E_{n}$, $\frac{\partial E_{in}}{\partial n}=E_{i}E_{n}^{'}$.

Подставив эти выражения в исходные уравнения, и разделив на $E_i E n$, получим $-\frac{1}{\ln 2^{\pi}} \frac{E^{'}i}{Ei} = \frac{n}{2} \frac{E^{'}n}{En}$.

Такое равенство возможно тогда и только тогда, когда обе части равны одной и той же постоянной, так как левая и правая части зависят от разных переменных. Таким образом, если постоянная будет «1», то последнее равенство распадается на два обыкновенных дифференци-

альных уравнения:
$$-\frac{1}{\ln 2^{\pi}}\frac{E^{'}i}{Ei} = 1$$
, $\frac{n}{2}\frac{E^{'}n}{En} = 1$, или $-\frac{1}{\ln 2^{\pi}}\frac{dEi}{di} = Ei$, $\frac{n}{2}\frac{dEn}{dn} = En$.

Если постоянные интегрирования Ci = hc, $Cn = \frac{1}{e^2}$, то $EiEn = Ein = \frac{hc}{e^2} \frac{n^2}{2^{\pi(i-1)}}$.

Аналогично находим, что $P_{in}=\frac{hc}{e^22^{\pi(i-1)}n^2}$, $N_{in}=\frac{hc}{e^2}\frac{2^{\pi(i-1)}}{n^2}$, $P_{in}=\frac{hc}{e^2}n^22^{\pi(i-1)}$, где индекс $i=1,2,\ldots,8$, индекс $n=1,2,\ldots,29$.

Эти функции представимы в форме периодических таблиц. Квантовые значения P_{in} - и E_{in} -функций убывают в интервале $\begin{bmatrix} 861,02281 \\ \hline & \frac{1}{861,02281} \end{bmatrix} = \begin{bmatrix} \frac{hc}{e^2} \div \frac{e2}{hc} \end{bmatrix}$. Значения B_{in} -констант, напротив, растут в интервале $\begin{bmatrix} \frac{hc}{e^2} \div \frac{hc}{e^2} 2\pi^7 \end{bmatrix}$.

Таблица N_{in} — констант состоит из двух частей: константы верхней части убывают в интервале $\left\lfloor \frac{hc}{e^2} 2^{\pi^7} \div \frac{hc}{e^2} \right\rfloor$, константы нижней части убывают в интервале $\left\lfloor 861,02281 \div \frac{1}{861,02281} \right\rfloor = \left\lfloor \frac{hc}{e^2} \div \frac{e2}{hc} \right\rfloor$

Система четырех периодических таблиц констант составит математический образ симметрии вакуума, которая названа метрической.

3. Атомная динамика

3.1. Протонное управление.

Сохраним, ставшие классическими, понятия состояние и орбиталь, наполнив их новым содержанием. Электроны и нейтроны не могут превратить один атом в другой. Такими частицами являются протоны. Во введении было отмечено, что структура таблицы P_{in} -констант наиболее идентична структуре Периодической системы элементов. Такое предопределение дает право считать, что P_{in} — таблица составлена из констант протонных орбиталей ядра атома.

Сигнатура (- -) отвечает P_{in} -константам, т.к. i- и n-индексы находятся в знаменателе. Естественно, сигнатура (- +) связана с E_{in} -константами. Стало быть, пространственные индексы (n-индексы) обеих таблиц противоположно ориентированы.

Протоны и электроны в атоме пространственно разделены. Теперь остается сказать, что E_{in} -таблица есть совокупность констант электронных орбиталей.

Сопоставим обе таблицы, не забывая, что ведущей будет P_{in} -таблица. Протоны — главные частицы атома.

№ 4. 2009

3.2. Атомные (электронные) орбитали

Согласуем P_{in} - и E_{in} - константы, желая получить от такого согласования новый порядок E_{in} -констант, отвечающий структуре P_{in} -таблицы.

С этой целью пронумеруем первые восемь констант и составим одно-номерные пары:

1	2	3	4	5	6	7	8
P_{12}	P_{21}	P_{13}	P_{14}	P_{15}	P_{22}	P_{16}	P_{31}
E_{36}	E_{415}	E_{414}	E_{413}	E_{22}	E_{35}	E_{412}	E_{529}

Правило индексации электронных согласованных констант: $n(P_{in})=n(AO)$, $i(E_{in})=i(AO)$.

В расшифровке правило звучит так: от P_{in} -констант берется n-индекс, от E_{in} -констант берется i-индекс.

Новый порядок E_{in} — констант выглядит так:

1	2	3	4	5	6	7	8
E_{32}	E_{41}	E_{43}	E_{44}	E_{25}	E_{32}	E_{46}	E_{51}

Согласно правилу индексации найдены все согласованные константы и составлена таблица АО (таблица 3).

3.3. Атомная связь

Атом — стабильная структура. Электроны в атоме удерживаются посредством атомной связи, величина которой будет энергией ионизации. Известно, что она пропорциональна Z^2 (Z — порядковый номер элемента). Наша задача найти формулу энергии связи, включив в нее константы (таблица №1 и таблица №3).

В атомном взаимодействии в качестве энергетической пропорциональности выступает приведенная масса из равенства $\frac{1}{E_{\tau}} = \frac{1}{E_p} + \frac{1}{E_e}$, где E_p , E_e массы протона и электрона, $E_{\tau} = 510725,2$ эВ.

Частицы каждого атома занимают определенные состояния, общая информация о которых содержится в таблицах 1и 3.

Водород

Протон атома находится на орбитали P_{12} , электрон — на орбитали E_{32} .

Эти две константы, вкупе с E_{τ} , группируются в формулу первой энергии ионизации атома:

$$W_1(H) = -\frac{E_{\tau}}{2P_{12}E_{32}} = -\frac{E_{\tau}}{2F(H)} = -13,598 \,\mathrm{sB}.$$

Функция водорода $F(H) = P_{12}E_{32}$.

Гелий

Порядковый номер атома 2.

Если первый протон остается на орбитали P_{12} , то второй занимает орбиталь P_{21} и удерживает свой электрон на орбитали E_{41} .

Формула первой энергии ионизации имеет вид:

$$W_1(\text{He}) = -\frac{E_{\tau} \cdot Z^2}{2P_{12}E_{32}E_{41}} = -24,614 \text{ pB}.$$

Близкое значение энергии атомной связи можно получить при аддитивной электронной функции

$$W_1(\text{He}) = -\frac{E_{\tau} \cdot Z^2}{2P_{21} \left(E_{32} \sqrt{12} + \frac{E_{41}}{\sqrt{12}} \right)} = -24,583 \text{ pB}$$

Предполагается скрытая орбитальность электронов: электрон E_{32} имеет момент $\ell=-3$, электрон E_{41} обладает моментом $\ell=3$.

№ 4,2009 **49**

Электрон E_{41} по n-индексу расположен ближе к ядру, чем электрон E_{32} (1 против 2). Изза такой конфигурации (валентный E_{41} ближе к ядру) гелий химически инертен.

Литий

Атом лития открывает второй период Системы элементов. Конфигурация гелия дополняется валентной парой ($P_{13}E_{43}$).

Формула атомной связи прирастает индексом n=2 (номер электронного слоя, в котором находится валентный электрон E_{43}):

$$W_1(\text{Li}) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} P_{13} E_{43} \cdot (E_{32} + E_{41})} = -5,396 \text{ gB},$$

где $2\pi P_{13}E_{43} = F(H)$. Мультипликативность электронных функций соседних электронных слоев $(E_{43} (E_{32} + E_{41}))$ против $(E_{43} + E_{32} + E_{41}))$ дает объяснение периодичности значений энергий ионизации элементов. Заметим наперед, что формула W(Z) будет содержать электронные функции только двух слоев — своего и предыдущего.

Бериллий

Конфигурация лития дополняется валентной парой (P_{14} , E_{44}), но при этом электрон E_{43} промотирует в первый слой на орбиталь E_{41} . Состояние E_{43} второго слоя остается свободным. С учетом сказанного

$$W_1(\text{Be}) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} P_{14} E_{44} (E_{32} + 2E_{41})} = -9,245 \text{ pB},$$

где $F(1) = (E_{32} + 2E_{41}) = \text{const во всех конфигурациях}$

Бор

Движение частиц по состояниям приостанавливается — надо заполнить брешь E_{43} .

Конфигурация бериллия дополняется валентной парой (P_{14} , E_{43}). Протон P_{14} создает орбитальный момент ℓ = -1 у чужого электрона E_{43} (свой электрон E_{44}).

Формула связи содержит радикал:

$$W_1(B) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} P_{14} F(1) (E_{44} + E_{43} \sqrt{2})} = -8,0458 \, \text{9B}.$$

Углерод

Протон P_{15} согласован с E_{25} .

Однако, константа $E_{25} > E_{11}$, т.е. принадлежит внеатомной орбитали. Посему предыдущая конфигурация дополняется валентной парой (P_{15} , E_{44}) с орбитальным моментом ℓ = -1 у E_{44} .

$$W_1(C) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} P_{15} F(1) (E_{43} + \sqrt{2} E_{44} + E_{44})} = -10,913 \text{ pB}.$$

Азот

Рубеж E_{25} не пройден.

Конфигурация углерода дополняется парой (P_{15} , E_{43}) без орбитального момента у E_{43} изза, может быть, экранировки двумя E_{44} .

$$W_1(N) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} \cdot P_{15} F(1) (2E_{43} + 2E_{44})} = -14,157 \, 9B.$$

Между прочим, $(E_{43}+E_{44})=E_{45}$, что дает согласование по n-индексу (P_{15},E_{45}) .

В конфигурации атома 2 безэлектронных протона.

Кислород

Структура атома азота достраивается парой (P_{22}, E_{32}) с орбитальным моментом $\ell=+1$ у E_{32} . Изменился знак момента, т.к. создающий момент P_{15} является внутренним по отношению к P_{22}

50 № 4, 2009

$$W_1(O) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} F(1) P_{22} \left(2E_{45} + \frac{E_{32}}{\sqrt{2}} \right)} = -13,714 \text{ 3B}.$$

Константа орбитали E_{32} повторилась. Электрон водорода также занимает состояние с E_{32} .

Фтор

В структуре атома появляется своя валентная пара (P_{16} , E_{46}). Протон P_{15} создает орбитальный момент у электрона E_{46} .

$$W_1(\text{Ne}) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} F(1) P_{16} \left(2E_{45} + E_{32} + \frac{E_{46}}{\sqrt{2}} \right)} = -16,75 \,\text{9B}.$$

Неон.

Валентная пара (P_{31}, E_{51}) с конфигурацией фтора создают структуру атома .

$$W_1(\text{Ne}) = -\frac{E_{\tau} \cdot Z^2 n^2}{2 \cdot 2^{\pi} \cdot F(1) P_{31} (2E_{45} + E_{32} + E_{46} + E_{51})} = -20,486 \,\text{9B}.$$

Объяснение инертности благородных газов приведено на примере структуры гелия.

3.4. Протон — электронные конфигурации атомов.

1. Водород.

P_{12}

2.Гелий.

$$\begin{array}{c|cc}
P_{12} & P_{21} \\
E_{32} & E_{41}
\end{array}$$

3. Литий.

P_{12}	P_{21}	P_{13}
E_{32}	E_{41}	E_{43}

4.Бериллий.

P_{12}	P_{21}	P_{13}	P_{14}
E_{32}	E_{41}		E_{44}
	E_{41}		

6. Углерод.

			P_{14}	
P_{12}	P_{21}	P_{13}	P_{14}	P_{15}
E_{32}	E_{41}	E_{43}	E_{44}	
	E_{41}		E_{44}	

8. Кислород.

			P_{14}	P_{15}	
P_{12}	P_{21}	P_{13}	P_{14}	P_{15}	P_{22}
E_{32}	E_{41}	E_{43}	E_{44}		E_{32}
	E_{41}	E_{43}	E_{44}		

10. Неон.

			P_{14}	P_{15}			
P_{12}	P_{21}	P_{13}	P_{14}	P_{15}	P_{22}	P_{16}	P_{31}
E_{32}	E_{41}	E_{43}	E_{44}		E_{32}	E_{46}	E_{51}
	E_{41}	E_{43}	E_{44}				

P_{12}	P_{21}	P_{13}
E_{32}	E_{41}	E_{43}

5. Бор

1			
			P_{14}
P_{12}	P_{21}	P_{43}	P_{14}
E_{32}	E_{41}	E_{43}	E_{44}
	E_{41}		

7.Азот.

				P_{14}	P_{15}
P_1	2	P_{21}	P_{13}	P_{14}	P_{15}
E_3	2	E_{41}	E_{43}	E_{44}	
		E_{41}	E_{43}	E_{44}	

9. Фтор.

			P_{14}	P_{15}		
P_{12}	P_{21}	P_{13}	P_{14}	P_{15}	P_{22}	P_{16}
E_{32}	E_{41}	E_{43}	E_{44}		E_{32}	E_{46}
	E_{41}	E_{43}	E_{44}			

Сравнивая электронные заполнения атомов в существующей и в табличной теории, увидим различия в электронной конфигурации атомов. Приведем три сравнения.

Водород. Электрон занимает состояние 1_{S.} В табличной теории это будет состояние с константой связи E_{32} .

Гелий. Два электрона находятся в низшем состоянии 1_{S} .

Physics of consciousness and life, cosmology and astrophysics

В табличной теории электроны занимают два разных состояния: одно состояние с константой E_{32} , второе — закрывающее первую оболочку, — E_{41} .

Литий. Два электрона заполняют состояние 1_S , третий — состояние 2_S .

В табличной теории два электрона занимают состояние первой оболочки (E_{32} , E_{41}), третий — состояние E_{43} , открывающее вторую оболочку.

№ 4,2009

Таблица 1. Периодическая таблица P_m – констант.

P_{11}	P_{21}	P_{31}	P_{41}	P_{51}	P_{61}	P_{71}	P_{81}	
24 15		P_{16}	P_{26}	P_{36}	P_{46}	P_{56}	P_{66}	766
0 0			P ₁₁₅	P_{215}	P_{315}	P_{415}		9
			P_{114}			P_{414}	P_{514}	
0 0			P_{113} P_{114}	P ₂₁₃ P ₂₁₄	P ₃₁₃ P ₃₁₄	P_{413}	P ₅₁₃ P ₅₁₄ P ₅₁₅	.8)
	P_{12}	P_{22}	P_{32}	P_{42}	P_{52}	P_{62}	P_{72}	
		P_{15}	P_{25}	P_{35}	P_{45}	P_{55}	P_{65}	3
			P_{112}	P_{212}	P_{312}	P_{412}	P_{512}	266
5-8				P_{129}	P229	P_{329}	P_{429}	3
				P ₁₂₈ P ₁₂₉	P_{228}	P ₃₂₈ P ₃₂₉	P_{428}	
20-00	The state of the s		P_{1111}	P ₃₄ P ₁₂₆ P ₁₂₇ P ₂₁₁	P_{311}	P_{411}	P423 P424 P425 P510 P64 P426 P427 P511 P428 P429 P512	3)
				P_{127}	P_{227}	P_{327}	P427	
				P_{126}	P_{226}	P326 I	P_{426}	
		P_{14}	P_{24}	P_{34}	P44	P_{54}	P_{64}	
9-8			P_{110}	P_{210}	P_{310}	P_{410}	P_{510}	3
				P_{125}	P225	P_{325}	P_{425}	
20-00				P_{124}	P_{224}	P_{324}	P_{424}	3)
				P_{123}	P_{223}	P_{323}	P_{423}	
			P_{19}	P ₂₉	P_{39}	^{67}d	P_{59}	
				P ₁₂₂	P_{222}	P_{322}	P ₄₂₂	26
0-0				P ₁₂]	P_{221}	P_{321}	P ₄₂]	P_{521}
			P_{18}	P_{28}	P_{38}	P48	P.58	P_{68}
8	×			P_{120}	P_{220}	320	42	P_{520}
				2119	219	315	P_{41}	P518 P73 P519 P520
		P_{13}	P_{23}	P_{33}	P_{43}	Ps	P_{63}	P73
				P_{118}	P_{218}	P_{318}	P_{418}	P_{518}
3-3			P_{17}	P_{27}	P_{37}	P_{47}	Ps7	P67
				P_{117}	P_{217}	P_{317}	P417	P516 P517 P67
23-03				P_{116}	P_{216}	P_{316}	P ₄₁₆	P516

Таблица 2. Периодическая таблица E_{in} – констант.

E_{11}	E_{21}	E_{31}	E_{41}	E_{51}	E_{61}	E_{71}	For
	E ₅₁₆	E616	E_{716}	E816	s		
	E_{517}	E617	E_{717}	E817		S-X	
	E47	E_{57}	E_{67}	E_{77}	E_{87}		
		E618		E818			
		E43	E_{53}	E63	E_{73}	E83	
	E ₅₁₉	E619	E_{719}	E819			
	E_{520}	E620	E_{720}	E820	g		
	E48	E58	E_{68}	E78	E_{88}	S-25	
	l		E_{721}				
		S - S	E_{722}				
	E49	E59	E69	E79	E_{89}		
	E523	E623	E723	E823			
	E524	E624	E_{724}	E824	c		
	E525	E625	E_{725}	E825		S-X	
	E_{410}	E_{510}	E_{610}	E_{710}	E_{810}		
	E_{34}	E44	E_{54}	E64	E_{74}	E84	
	E526	E626	E726	E826			
	E527	E627	E_{727}	E827			
	E_{411}	E_{511}	E_{611}	E_{711}	E_{811}		
	E528	E628	E728	5828		S-X	
	E529	E_{629}	E729	12 E829 1			
	E412	E ₅₁₂	E_{612}	E712	E_{812}		
	E35	E45	E55	E65	E75	E85	
	E_{22}	E_{32}		E ₅₂	E_{62}	E72	For
	E414 E413	E ₅₁₃	E614 E613 E42	E714 E713 E52	E814 E813 E62		
	E_{414}	E514	E614	E714	E814	S-X	
	E415	E515	E615	E715	E815		
	E_{36}	E46	E_{56}	E66	E76	E_{86}	

Таблица 3. Периодическая таблица констант атомных орбиталей.

z	1	2	3	4	5	9	7
E_{11}	E_{41}	E_{51}	E_{51}	E_{61}	E_{71}	E_{81}	E_{81}
		E46	E56	E_{66}	E_{76}	E_{86}	E_{86}
			E415	E515	E615	E715	E715
			E514	E_{614}	E714	E814	E814
			E513	E_{613}	E_{713}	E813	E813
	E_{32}	E_{32}	E42	E_{52}	E62	E_{72}	E_{82}
		E_{25}		E_{65}			
			E512	E_{612}	E_{712}	E_{812}	E812
				E629	E729	E829	E629
				E528	E_{628}	E728	E828
			E_{511}	E_{411}	E_{511}	E_{611}	E_{711}
				E627	Erzr	E827	E827
				E626	E126 E127	E826	E826
		E44	E44	E_{54}	E_{64}	E74	E_{84}
			E_{310}	E_{610}	E725 E710	E_{810}	E_{710}
				E625	E725	E825	E825
	5 - 97.			E524	E624	E724	E824
	5 - 97.				E523		
	(1 – 97). 		E_{59}	E_{39}	E_{49}	E59	E69
	() - 97.			E_{522}	E622	E_{722}	E822
	0 00			E_{521}	E_{621}	E_{721}	E_{821}
	0 - 92		E58	E_{58}	E_{68}	E78	E_{88}
				E_{420}	E_{520}	E_{620}	E519 E720
				E_{219}	E_{319}	E_{419}	E519
		E_{43}	E43	E53	E_{63}	E73	E_{83}
				E_{518}	E_{618}	E718	E_{818}
			E57	E_{47}	E_{57}	E_{67}	E17
				E517	E617	E_{717}	E817 E77
	0 10		2 12	12.5	150	12	18

№ 4,2009

4. Заключение

Метрическая система вакуума открыта более 20 лет назад. Первое сообщение приходится на 1986 год (сохранился ответ на него).

Табличная теория объясняет:

- 1. Протон-электронную структуру атомов;
- 2. Феномен «семь закрытых оболочек (слоев) электронного заполнения атомов»: каждая оболочка закрывается состоянием с константой связи, индекс которой n=1: E_{41} , E_{51} , E_{51} , E_{61} , E_{71}, E_{81}, E_{81} , (см. таблицу 3);
- 3. Феномен «семь закрытых оболочек (слоев) протонного заполнения ядер атомов»: каждая протонная оболочка заканчивается состоянием, константа которого имеет индекс n=1: P_{21} , P_{31} , P_{41} , P_{51} , P_{61} , P_{71} , P_{81} (см. таблицу 1);
- 4. Периодичность значений первых энергий ионизации нейтральных атомов;
- 5. Инертность атомов благородных газов;
- 6. Орбитальность атомных электронов.

Табличная теория предсказывает:

- 1. Наличие щелей в атомах. Например, константа атомной орбитали $E_{25} > E_{11}$. Из-за этого она не занята электронами. Протоны P_{15} , P_{15} , остались без электронов. Эти протоны проявляют себя в создании орбитальных моментов у соседних электронов.
- 2. Повтор состояний с одной и той же константой связи в соседних оболочках (состояние E_{32} имеют атомы водорода и кислорода).
- 3. Отличие электронных конфигураций сравниваемых теорий. Например, атом гелия имеет двухуровневую структуру (состояния E_{32} и E_{41}), атом лития — трехуровневую структуру (состояния E_{32} , E_{41} и состояние второй оболочки E_{43}).

Новая теория расширяет горизонты нашего знания об атоме. И данная работа должна стать руководством к действию. Надо очертить территорию, которую способна охватить новая теория. Перечислим некоторые направления.

- а) Желательно «пройти» всю таблицу элементов, выяснить особенность каждого атома.
- б) Энергетические уровни атома водорода можно рассчитать по формуле $W_n(H) = -\frac{E_{\tau}}{2P_{12}E_{22}n^2} = -\frac{W_1(H)}{n^2}$, где n =1,2,3,... Новые константы орбиталей возбужденного

атома $E_{in} = E_{32} \cdot n^2 = E_{32} \cdot E_{34}$, E_{36} , E_{38} , E_{310} , орбитали E_{38} , E_{310} ... — внеатомные орбитали.

Как рассчитать уровни возбужденного атома гелия, других атомов?

в) Протон — электронная связь типа (P_{12} — E_{32}) называется одинарной связью, которая ничего не привносит в изменение энергии ионизации. В конфигурациях атомов не редкость двойные связи:

$$(P_{21} < P_{15})$$
, $(E_{32} < P_{15})$, $(E_{46} < P_{15})$ и т. д., тройные связи.

Такую специфику надо исследовать, чтобы получить тонкие поправки в расчетах энер-

гии ионизации.

г) приложения периодических таблиц в теории молекул, твердого тела, элементарных частиц, другие теории.

Odinokin A. S.

Structure of atoms in the tabular theory

The analysis of variability of the relation $\hbar c/e^2$, i.e. the functions $P_{in} = \hbar c/(e^2 \cdot n^2 \cdot 2^{\pi^{(i-1)}})$ has revealed hidden indexing periodicity. In system nuclear (indexing) co-ordinates, due to found out periodicity, the device in the form of periodic tables is received powerful numerically-group. These tables have laid down in a basis of the tabular theory, the new arising theory of a microcosm. The key experimental values of the first energies of ionization of neutral atoms are received too: 13,6; 24,6; 5,4; 9,3; 8,3; 11,3; 14,5; 13,6; 17,4; 21,6.

Keywords: atom, electron, proton, orbital, resulted mass, energy of ionization, electronic layer, number of element, electronic filling of atom, tabular theory, atomic (indexing) co-ordinates, constant of proton and electronic orbital, electronic function, proton management, valency pair.

54 $N_{2}4.2009$