Гипотезы

УДК 537

Бельцов Р.И.

ОБ ОБОЛОЧКЕ ЯДЕР ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Минимизация расстояний структуры диполей электрон-позитронов при большой энергии фотона определяет переход сверхтекучих токов вакуума в адроны, вследствие фазовых переходов II-рода. На оболочке адрона происходит взаимодействие со сверхтекучим током электрон-позитронных пар с образованием фотонов, с линейной функцией энергии.

Ключевые слова: адроны, электрон, позитрон, фазовые переходы.

1. Введение

Возможное образование ядер из электрон-позитронов - это фазовый переход II рода. Основному состоянию ядра соответствует заполнение внутренних уровней энергии. Нуклоны располагаются на оболочках. Каждый нуклон с квантовыми числами n и l. Ввиду сильной спинорбитальной связи все уровни с l расщепляются на два подуровня: $\bar{j} = \bar{l} \pm \frac{1}{2}$.

Величина радиуса ядра [3]: $R_{\scriptscriptstyle S} = (1,45-1,5) \cdot A^{1/3} \cdot 10^{-13}$ см, где A- номер ядра. Корреляция к энергии ядра за счёт поверхности [3]: $(\Delta B)_{\scriptscriptstyle S} = -a_{\scriptscriptstyle S} \cdot A^{2/3}$, где $a_{\scriptscriptstyle S} = const$.

2. Электродинамика адронов

Адронный ток с 4-импульсом перехода $J_{\it fi}$ билинеен по волновым функциям u_1 и u_2 * [1]:

$$J_{fi} = u_2 * \Gamma u_1$$
, где 4- вектор, Γ - вершинный оператор.

В импульсном представлении ортогональность тока перехода 4-импульсу фотона $q=p_2-p_1,\ qJ_{\,fi}=0$.

При фотоне $q \to 0$, вершинный оператор $\Gamma^\mu = F_e(0)\gamma^\mu - \frac{1}{2M} \big[F_m(0) - F_e(0) \big] \cdot G^{\mu\nu} \cdot q^\nu$, где М- масса адрона; $F_e(0) = Ze$ - электрический заряд, $F_m(0) - F_e(0)$ - аномальный магнитный момент в единицах $\frac{e}{2M}$.

Функция Фурье распределения зарядов: $e\rho(\vec{r}) = e \frac{1}{(2\pi)^3} \int F(-q^2) \cdot e^{i\vec{q}\vec{r}} dq^3$.

Для адрона со спином $\frac{1}{2}$ ток перехода в системе Брейта:

$$J_{fi}^{0} = (F_e - F_m) \frac{M}{\varepsilon} (\overline{u_2} u_1) + F_m (\overline{u_2} \gamma^0 u_1) = F_e (\overline{u_2} \gamma^0 u_1),$$

и $\vec{J}_{fi} = \frac{1}{2M} F_m \left[\vec{iq} \left(u_2 \sum u_1 \right) \right]$, где \sum - трёхмерный оператор спина.

Трёхмерному вектору плотности токов $e\vec{j}(\vec{r}) = rot\mu(\vec{r})$, где $\mu(\vec{r}) = \frac{e}{2M} \int F_m(-q^2) \cdot e^{i\vec{q}\vec{r}} dq^3$, плотность магнитного момента.

И, фотон на адроне $\rightarrow \vec{k} = \overrightarrow{p_1} - \overrightarrow{p_2}$

Ток перехода по степеням вектора \vec{k} .

62 № 2,2014

Поперечность тока $J_{fi}=\left(\rho_{fi}\cdot\overrightarrow{J_{fi}}\right)$ в трёхмерном виде: $\vec{k}\cdot\overrightarrow{J_{fi}}=\omega\rho_{fi}$, где $\hbar\omega$ - энергия фотона.

Отметим, $Q_{em}^{(9)}$ и $Q_{em}^{(m)}$ — адронные электрические и магнитные моменты токов перехода.

3. Образование электрон-позитронных пар при столкновениях ядер

Как известно [1], электрон-позитронные пары образуются и при столкновении ядер. Энергия пары равна изменению энергии ядер: $\varepsilon_- + \varepsilon_+ \cong \frac{M \vee^2}{2}$, где \vee -относительная скорость; $M = \frac{M_1 \cdot M_2}{M_1 + M_2}$ - приведённая масса ядер.

Конденсат электрон-позитронных пар описывается комплексной волновой функцией: $(\psi \cdot \psi^*) = \rho_S$, $\psi = \sqrt{\rho_S} \cdot e^{i\theta(\vec{r},t)}$. Полное сечение образования пары [1]:

$$\sigma = \frac{16}{27\pi} \left(Z_1 Z_2 \alpha \right)^2 \cdot r_e^2 \left(\frac{c}{\vee} \right)^2 \left(\frac{Z_2 m_0}{M_2} - \frac{Z_1 m_0}{M_1} \right) \cdot \ln^3 \frac{\hbar \vee}{m_0 c^2 R} ,$$

где R - радиус ядра, α - постоянная тонкой структуры, Z_1, Z_2 - заряды сталкивающихся ядер.

4. Взаимодействие оболочек адронов с электрон-позитронным полем

Переход 4-х импульсов адронов связан с функцией фотона (см. выше): $q=p_1-p_2$, где q - фотон.

Фотон q и ток $J_{\it fi}$ перпендикулярны на адроне, $qJ_{\it fi} \to 0$.

Виртуальный фотон с плотностью токов электрон-позитронов физического вакуума [1]:

$$\rho\left(k^{2}\right) = -\frac{4\pi e^{2}}{3}\left(2\pi\right)^{3} \sum_{i} <0\left|j_{\mu}(0)\right| n > <0\left|j^{\mu}(0)\right| n \times \delta^{4}\left(k-P_{n}\right),$$
 где k - волновой вектор.

Суммирование электрон-позитронных пар виртуальным фотоном с 4-импульсом $k = (\omega, k) (\omega > 0)$. И, \overrightarrow{P} - оператор ф -импульса системы частиц, $\left\langle n \middle| j^{\mu} \left(t, \overrightarrow{r} \middle| m \right\rangle = \left\langle n \middle| j^{\mu} \left(0 \middle| m \right\rangle e^{-i\left(P_m - P_n \cdot \overrightarrow{r}\right)}$.

Таким образом, на оболочке адрона при фазовом переходе II-го рода происходит взаимодействие со сверхтекучим током электрон-позитронных пар фотона с линейной функции энергии: $E_{\phi} = h \omega$.

Фотон создаёт деформацию электрон-позитронного диполя [7]: $\Delta r = 2\pi r^2 \frac{1}{\lambda}$, в зависимости от частоты и длины волны фотона.

Примечание. Минимальное расстояние между электрон-позитроном $e^- \leftrightarrow e^+$ при фазовом переходе II-го рода $b_{\min} \cong 10^{-17}$ см.

Предельная деформация диполя [7]

$$\Delta r_{rb} = \frac{h \cdot v_{rb} \cdot r^2 \alpha}{e_0^2 \cdot \xi} = \alpha \cdot r_e = \frac{r_e}{137,036}$$
, где r_e - дипольная структура электрон-позитронов вического вакуума.

Волна Де-Бройля частицы m, скорости υ связана с постоянной Планка h, которая является функцией структуры частиц-античастиц физического вакуума.

$$\lambda = \frac{h}{m \overrightarrow{V}} \text{, где } h = 2\pi \cdot e_0^2 \cdot \frac{r_e}{\Delta r_{rb}} \sqrt{\frac{\xi}{\gamma}} \text{, где } \Delta r_{rb} = \alpha \cdot r_e \text{; } r_e \text{- размер между структурными элементами } 2 \Big(e^- e^+ \Big).$$

№ 2,2014 **63**

Скорость света $c = \sqrt{\xi \cdot v}$, где v - магнитная постоянная вакуума, ξ - диэлектрическая постоянная.

Выводы

- 1. Дипольная структура электрон-позитронов $2(e^-e^+)$ физического вакуума определяет фазовый переход II-го рода в адроны при минимизации их расстояния $b_{\min} \approx 10^{-17}$ см.
- 2. На адронах, ток $J_{fi} \to A \cdot e^{i\omega t}$, как следствие возбуждения электрон-позитронов на движущейся частице с массой M и радиусом $R \to f(M)$.

Литература:

- 1. Ландау Л.Д. и Лифшиц Е.М. Теоретическая физика. Т. IV. Квантовая электродинамика./ В.Б.Берестецкий, Е.М.Лифшиц, Л.П.Питаевский/, М.: Наука, 1981.
- 2. Ландау Л.Д. и Лифшиц Е.М. Теоретическая физика. Т. І І. Теория поля, М.: Наука, 1988.
- 3. Валантэн Л. Субатомная физика: ядра и частицы. В 2-х томах. М.: Мир, 1986.
- 4. Соколов А.А., Тернов И.М., Жуковский В.Ч. Квантовая механика.- М.: Наука, 1979.
- 5. Шмидт В.В. Введение в физику сверхпроводников.- М.: Наука, 1982.
- 6. Яворский Б.М., Детлаф А.А. справочник по физике. М.: Наука, 1971.
- 7. Рыков А.В. Начала натуральной физики. М.: ОИФЗ РАН, 2001.

Статья поступила в редакцию 30.07.2014 г.

Beltzov R.I. On nuclear shell of chemical elements

Minimizing distances of structural electron-positron dipoles at high energy proton determines the transition of super fluid currents in vacuum hadrons phase transition of 2-nd kinds. On the shell hadron it is interaction with super fluid current of electron-positron pairs of the 1-st hind with formation of a linear function of proton energy $E_{ph}=h\cdot\omega$.

Keywords: hadrons, electron, positron, phase transitions.

64 № 2,2014