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This paper is the second (first see [1]) in a series whose goal is to develop a
fundamentally new way of constructing theories of cacomputing (categorical computing). The
motivation comes from a desire to address certain deep issues that arise when contemplating
guantum & mathematical biology’s’ theories of space and time. A topos is special type of the
category. The topos approach to the formulation of informatics’ theories includes a new form
of informatics’ logic. We present this topos informatics’ logic, including some new results, and
compare it to standard intuitionistic logic, all with an eye to conceptual issues. Importantly,
topos informatics’ logic comes with a clear geometrical underpinning.
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But the wrongs love bears will make
Love at length leave undertaking
‘No, the more fools in do shake,
In a ground of so firm making,
Deper still they drive the stake.” *
Sir Philip Sidney

1. Introduction. CaComputers

The biological, neural, quantum, quantum, quantum-fields, social or cultural systems are com-
plex natural computing informatics’ systems. To study such systems, in the last fifteen years the au-
thors have gradually developed the notion of CACOMPUTERS (CAM).

CAM have some common characteristics: they are open (exchange with their environment).
CAM are self-organized. CAM are built up from a more large hierarchy of interacting complexity
levels. CAM may memorize their experiences to adapt to various conditions through a change of re-
sponse.

Mathematics is defined as the science (In contradistinction, Newton and Leibniz think a sci-
ence is defined as Mathematics) at which rephrase any information in mathematical terms. Further, we
have studied of the mathematical theory of a categorical computing systems (or cacomputing sys-
tems, CAMS).

A cacomputing system is a "set of iterative interacting neuronsimple categorical construc-
tions", [1].

But the elements of a natural complex CAMS varies with time, for example learning new
skills. Thus they cannot be studied using observables defined on a fixed space of a stationary phases
and laws. So, we will give:

A;) a successive configurations of CAMS, formed by its components and their interactions at

a given time t (mathematical model is a time-category t-x),
A;) a process of varies with time between these configurations (mathematical model is a func-

tor @ for pair time-categories t-x, s-K).
The components of CAMS are organized in a hierarchical structure ¥, with several levels of

Hi, e xoxaHHs 3MicT OyTTA
Koxanns, mumt, OyTTs MPOJOBKHTE.
He moxe OyTb Biji cMepTi BOPOTT,
3eMJs UeKae BCixX, HIKOTO HE TPUBOXKHTH,
OO0O0B’sI3KOBHH ITYHKT KPYTY *KUTTH.
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complexity. Each level depends of distinct laws, but the interfaces
between levels play an essential part.

A complex component is itself obtained by binding together
a sample, which determines its internal organization. This a sample
consists in a family of more elementary components with distin-
guished links between them.

The transition between successive configurations comes from
the archetypal operations: "birth, build, bind, death, partition”. It is
modeled by the process of systems complexification. A sequence of
systems complexifications can lead to the formation of components
with strictly increasing orders of complexity, see fig. 1. This process
describes the change resulting from the following operations:

A. addition of new elements,

D. destruction of components or their rejection in the environment,
C. complexity of samples into more complex components,

PD. partition and decomposition of higher order components.

In this paper we assume given abstract category K (a ensem-
bles Ob(k)) together with relations Mor(x).

Moreover, (0; — 02)eMor(k) mean that the ensemble o, is a
subensemble 0,; while (0, L 0,)eMor(K) mean is a test which o,
passes but 0, and all its subensembles fail.

2. Glossary. Category & Logic

Let T =(V(™),A™) and = (V(I'),AI?) are the or-

Pict. 1. A Fomenko. graphs, where V(T'), V(') are vertex and A(T'")) and A(T'®) are ar-
Hierarchic

rows. A homomorphism F(F.,F,) from I'*to I'*are the two maps

Fi: VI — V() , F: ATYH — AT); (1)
here the maps F;, F, such that

(i) (Fa(va),Fa(v2) e AT?);
(if) Fa(e)eA(r?)
for V(vi,vo) e A(TY) and for Yee A(TY).
Usually, we refer us a single symbol F = F(F,F,). We will denoted by Hem(I",G) the set of all

homomorphisms from an orgraph I'" to an orgraph G.
A category K consists of two collections, Ob(k), whose elements are the objects of x, and

Mor(k) the morphisms (or arrows) of X. To each arrow is assigned a pair of objects, called a source
and a target of the arrow.

The notation ¢: 0, ——> 0, means that as a morphism with source of the object o, and target of
the object 0,.

If @;: 0,—> 0, and @,: 0, ——> 03 are two morphisms, there is a morphism ¢, °© @;: 0, —> 03
called a composite of ¢, and @,. For each object o there is a morphism id,, called an identity of o,
whose source and target are both 0. These data are subject to the following axioms:

Al) for g:0——u, @oid, =id, co=¢;

A2) for @1 01— 0z, @21 02— 03, P3: 03——> 04, P3° (P, 0 Py) =(P3°9,) 0P,

Further, | offer some definition.
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An epimorphism ¢: 0 — u between objects o0 and u, in category, is a morphism such that for

any pair @1, : U - o of morphisms, the equality ¢, c@=0, c¢ implies that ¢; = @,. An epimor-
%

phism ¢ is denoted by ¢ : 0— u.
A monomorphism ¢: 0 — u between objects o and u, in category, is a morphism such that for

. - . . N
any pair @,@,: U o of morphisms, the equality @@, =@o¢, implies that ¢; = ¢.. A monomor-
-

phism ¢ is denoted by ¢ : 0 >— u.
A terminal object in a category is an object m if for every object o in the category, there is one

and only one morphism o — .

An initial object in a category is an object o if for every object o in the category, there is one
and only one morphism e — o.

An isomorphism ¢: 0 +~w U is a a morphism ¢ between the objects o and u, the category, if
there is a morphism y: u — o such that ¢ ° y = id, and y ° ¢ = id,.

Isomorphic objects denoted o = u are said the objects o and u, if there is a morphism
@: 0 — u that is an isomorphism @: 0 «~w U.

A global element of an object o, in a category, is defined to be a morphism ¢: # — 0. The set

of all global elements of o is denoted I',.

A diagram
¢1
0 »b
Y1 I v
a >C
¢
Fig.1
is called a pullback square provided that it commutes and that any commuting square of the form
1
¢
u »b
vl v
a >C
¢

There exists a unique morphism f : u — o for which the following diagrams commutes
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u \ o o l
b
\ w
C
¢, is called a pullback of ¢ along .

0
1
v
V1
>a
Let H be a set of monorphisms. A H -subobject of an object o is a pair (u , @), where
¢: U — 0 belongs to H.
Let X be a category with terminal object m. A subobject classifier for K is object Q € Ob(k)
together with morphism, named true, true : 8 ——Q that satisfies the following axiom:
For each monomorphism ¢: 0 >—— u there is one and only one morphism x,, such that

¢

0>

>U
o
Xo
>()

i true

is a pullback square.

The morphism "!" denotes a unique morphism in the category. The morphism y,, is called the
characteristic morphism, or character of the monomorphism (i.e., sub-object of u). The sub-object
classifier, when it exists in b, is unique, up to isomorphism (i.e., there is an isomorphism between Q
and an object u).

Let x be a category with products “x”. A category X is have power objects if to each object o
there are an object P(0) and an object e,, and monomorphism € : €, >— P(0) x 0, such that for any
object u, and monomorphism r : R — u x 0 there is exactly one morphism ¢, : u — P(0) for which
there is a pullback of the form

r
. , UX0
Or
€o > > P(0)x0
c

Note in mend that in category theory it is morphisms, rather than the objects.
A covariant functor @ : x; = K, from the category K; to the category X is a function that as-

signs to each object 0e Ob(k;) a object ®(0) e Ob(x), and to each morphism ¢: 0 —— u, peMor(k;) a
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morphism ®(g): ®(0) —> P(u) in such that
A. O(p; ° ©2) = D(py) ° D(@2), for the morphisms @,: W —— 0, @;: 0——> U, whenever @; ° @,
is defined

B. @, =id,, foreach object oeOb(Ky).

A contravariant functor ¥ : K; = X, from the category K; to the category X is a function that
assigns to each object 0eOb(k;) a object ¥(0)eODb(k;), and to each morphism ¢: 0 —> u,
@eMor(k;) a morphism ¥(p): ¥(u) — ¥(0) in such that

C. ¥(1 ° @) = ¥(¢1) (o), for the morphisms @,: W —— 0, @1: 0——> U, whenever @; ° ¢
is defined

D. ¥, =idy, foreach object 0oeOb(Ky).

For each category K the following conditions are equivalent:
(1) xis finitely complete,
(2) x has pullbacks and a terminal object.

A presheaf R on a category K is a covariant functor ¥ : K = Set, where Set is category sets and
sets functions.

A category T is a topos if T is finitely complete and has power objects.

With the term non-classical logic we refer to family of logics that differ from classical one, in
various aspects. For example, a intuitionistic logic (IL) is a part of classical logic (CL), in the sense
that all formulas provable in intuitionistic logic are also provable in classical logic.

Intuitionistic is here taken to mean that:

For those who wish to read more widely in category, graphs and logics see [2], [3].

3. Models of CAMS

Suppose K is a category such that
(1) = Ob(x ) are an objects;
(i) M= Mor(K ) are a morphisms.

0 will be interpreted as CAMS elements (in quantum-field theory (g-f) - observation). The
morphisms M will be interpreted as the interaction between the elements of CAMS.

A maximal object B of category
K = (Ob(x) , Mor(k)) )
is an unique terminal object FBE Ob(k) such that 0o — H for Yoe Ob(k)/{/}. The morphism
ff:0—> H, 3
is named final morphism of a element o€ Ob(k) (g-f interpreted : H - universe). and initial object ©
of xbe named minimal object (g-f interpreted : @ - black hole). The morphism

h":0—>n, 4)

is named final morphism of a element o€ Ob(K).
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A minimal object © of category K = (Ob(K). Mor(X)) is an unique initial object © € Ob(K)
such that @ —— v for ¥ veOb(x) /{ @ }. The morphism
Yo @ ——>V, (5)

is named zero morphism of an element ve Ob(K) (q-f interpreted | ® - super black hole).

3.1. CAMS - Model of a Orthospace.
Let K be the category with the maximal object H. We shall say that a triple
or=(x, L, M) 6)
is called a orthospace if Mor(K) has a ortomorphisms denoted o, Liyon 2 (shorthand - o,Llo,) if for
Yol.o2 € Ob(K)

02) : 0] ——0,,
and the maximal clement Be Ob(X) (will be denoted a roof) if the following conditions hold:

J_(O3 o= id,

(i) on V¥ 0,.0,€Ob(x)/{B} if L : 0y =05, then L : 0, =0, in this case Lo ©

(oy,05) (oy,0)

(ii) for Voe Ob(x)/{MB} # the orthomorphism 1 : 0——0:

(e,0)

(i) for Yoe Ob(K) obtains HLo.

3.2. CAMS -Model of a Preordered Orthospace.

Let Or is an orthospace with minimal elements @€ Ob(or) /{E}. A Preordered Orthospace
is a triple

pr=(or, L, 0) (7
will be denoted @ a hol) if the following condition hold:

(i) on Y04.0,.05€0b(Pr) satisfying if (0 ——>05) A (02L03) = (0;L03).

Consider further objects and morphisms a ortocategory K.
First, sibling term in Q to a orthogonally L is the notion of a nearness (or a proximity). which
indicated =.

01=0,< 0, Loy
for V0,.0.€0b(X)/{©}. The concept of the nearness is a generalization the identity. Obviously, the
ncarness relation is reflexively. symmetric in a class objects Ob(kK)/{®@}. A nearness partition
Ob(x)/{o} on equivalence classes, which will mark E, index every class one of his representatives
veOb(K)/{o}.
01,0, 0b(K)/{®}. o) interacts o, if
31 0i—— 0. feMor(X)/{L}. (®)

Denote 010> any interact relations (7) of the pair (01,02). or simply 0,2 0.
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Fig. 2.

Example. A natural neurons system (NNS) consists of a single neurons and NNS’s decision is
composed of its neuron’s decisions. Let a pair is a digraph G = (v,A), where V is a vertex (neurons) and
A is an arrows (neurons contact). In the digraphs modelling natural neurons systems, see the books [3—
4], an energetic constraints are by the association to their arrows of a weight (real number) measuring
their strength. Then the weight of a composite is a given function of the weights of its arrows. In this
case, the category

Kn = (Ob(kn) , Mor(kn)) 9)
can be constructed as the quotient of the category of paths {L}" of an appropriate digraph by the rela-
tion which identifies two paths 1; , 1; having the same weight N. The objects of Ob(kn) are neurons.
The morphisms of Mor(kn) are composite for all paths having the constant weight No. A signal trans-
mission be composite for all the morphisms. The categorical model of two neurons is by in figure 2. A
signal transmission g, is from a presynaptic neuron oy to a postsynaptic neuron ay. If @, is no inhibi-
tion, then all morphisms feg, are no a orthomorfism. If ¢, is a inhibition, then morphism o, is a or-
thomorfism to ¢, and denoted by

P11 @2 (10)
©eOb(kn) is a input port (receptors of neurosystem NNS).

Theorem 1. The triple
Nr = (Kn, 4, O) (11)

is a preordered orthospaces, when xn is the category (9), “L” are the orthomorphisms (10) and
O eOb(kn) is input port of kn.

Pict. 3. A.Fomenko. The Neurocomputer
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Proof. In [2].
4. Dynamic Models of CAMS
4.1. CAMST - Model of a Timescale Preordered Orthospace

Let Pris the preordered orthospace (7). Thus they cannot be studied using observables defined
on a fixed space of a stationary phases and laws. So, CAMST is not represented by a unique category,
will give:

C,) a timescale T is a finite part of R and teTis called a date, where T R, ITl < «,

C,) a time-category t-K for each of the dates t,

Cs) a relationship from the date t; to the date t, is a covariant relationship functor ®. for pair time-
categories t-K , s-K, where

D5 : t-K = 5K, (12)
for each pair date (s, t), s > t. Furthermore, the relationship functors satisfying the condition:

Csa) if v,siteTand if v > s > t, then the relationship functors @ ° @, Oy, are equal.
5. Control System of CAMST

5.1. A pattern recognizer (PR)

& (a) in athe time-category

t-K = (Ob(t-x ) , Mor(t-x) , T) (13)
is the data of a orgraph

r'=(V(),AI)) (14)
and a homomorphism F(F,F,) from I" to t-x, where

F1: V(') —> Ob(t-x), F2 : A() — Mor(t-K) (15)
with

(F1(v1),F1(v2))e Mor(t-¥); (16)

F2(e)e Mor(t-K) 17)

for V(vi,vo)e A(T') and for VeeA(I'), and T is the timescale with the functor’s properties C;- Cs.1. The

map F; (15) compare with a vertex v of " on an object o, of t-K, called an object o, of the pattern

recognizer (or PR) &, and an arrow x = <v, w> from v to w in I" on a morphism (pxeMor(t—K) from
o, to 0, , called a link L(¢gy) of the pattern recognizer &. A multi-link L((¢'), 0) of the pattern rec-
ognizer & to an object OGOb(t-K) is a family of morphisms (¢;) from each o; to o, correlated by the
links of the pattern recognizer &, that is, for each y = <0; , 0>, we have @; = @, ° @; . Such a multi-
link defines a cone with object o and the pattern recognizer & as its basis.

An object o* of the pattern recognizer @ (a) is a possible colimit (pc), pc denoted €’ (& —0*)

if there exists an object 0*Ob(t-x) satisfying the following conditions:
(1cl) 3 a noted multi-link L((y", 0*) of the PR & to an object o*, and
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(2cl) V multi-link L°((y"), o) of the PR & to an object o is bound into a unique morphism ¢ from o*
to o,
A PR & is called a decomposition V3 (0*) (see introduction) of object o* if exists unique a

pc C'(&»—0%).
5.2. Categorical Scheme-Model of Organism. SCOM
Further, a sextuple

DC= (Pr, t-K, T, &, T, F(F1,F2)) (18)
is called a Dynamical CAMST (or a Categorical Scheme-Maodel of Organism (SCOM)), where

pr = (or, 1, ©) is a preorderd orthospaces and or = (t-k, L, H) is an orthospace, where
t-k= (Ob(t-x) , Mor(t-K) ,T) is a time-category; here Tis timescale, & is a PR such that

(a) the time-category t-K is the data of a orgraph T" = (V(I"),A(I"));

(b) F(F+,F,) is a homomorphism from T to t-k, such that the conditions (15) - (17) hold.

A orgraph I'=(V(I'),A(I")) of COM is called a graph-scheme (or graph-control) of SCOM.
SCOM is operable at several graph-schemes, see in figure 4.

j:l::
S

Fig. 4.
In fact, SCOM is the sextuple
DC = (Pr, t-K, T, &, {T} F(FiiFaui) (18)*
is called a Dynamical CAMST (or a Categorical Scheme-Model of Organism), where {l"i}, i=
[1,n] are graph-controls. A action-field o-TI5; of the graph-scheme I'; = (V(I';),A(I)) is the minimal
subcategory of t-k with Ob(0-T';) o F1.i(V(I'i)) and Mor(0-T) o F..i(A(T)).

5.3. Books and Complexity of SCOM

Suppose the simple links from PR & to PR &, come from interactions between the objects
of these two PR; then they are modeled by the notion of a singleton. A singleton s(&,,d,) from PR

d, to PR &, is a maximal set of morphisms (called darts of the singleton s(d,d,)) between their

objects: Ob(0-T';) and Ob(0-I') if satisfying the following conditions:
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(s1) For V object 0eOb(0-T'y), there exists at least one dart of the singleton $(&1,d,) from o

to an object of Ob(0-T",), and if there exist several such darts, they are edged by a loop
of links 1(¢,) of the PR &, here @, Mor(0-T,);
(s2) The morphisms obtained by composing a dart of the singleton with the link of PR & on
the left, or of PR &, on the right are in the singleton s(&1,3,).
Further, a singleton from PR & to PR &, binds into a unique morphism ¢(0;0,) € Mor(t-K)
from 0,eOb(0-T';) to 0,eOb(0-T,), called a (1,3 ,)-simple respectively in the categories 0-I'; and O-

To.

Theorem 2. Let 0,€Ob(0-T';), 0,€0b(0-T";), 03 Ob(0-I'3). Suppose the morphism @(0,0,) is (
&1, ,)-simple and if the morphism @(0,05) is (&, 3)-simple; then their composite @(0,0,) ° @(0,03)
is (&1, 3)-simple.

Proof is in [2],[5]-[7].

Let § and 3 are two pattern recognizers in SCOM (18)*. Then decomposition Vg(0) and V3(0)
of an object 0 Ob(0-T'), T'« e{I}, are said to be equivalent if there exists a singleton s(§, 3) from
§ to 3 connection of o such that this connection is a (§,3)-simple dart. An object o is book (or cat-

manifold) if it present at least two non-equivalent decompositions Vg(0) and V3(0).

Now, (see introduction) we shall say that a complexity m of SCOM (18)* is called the length
of a maximal pairwise different chain of pattern recognizers

Bl ..o Zi Bty o Em (19)

such that V. and V. are non-equivalent decompositions.

Example. In natural biological systems (for example, biological organisms) consists of an or-
gans, the pattern recognizer play an important part (see the paper [4]).
6. Hierarchical CaComSystems

We will use terms from previous paragraph.

If c°(3—0) is the pc of a PR & of linked L((¢'),0;) objects 0;e Ob(t-k ) and if each o; is the pc

C(®di~ 0;) of a PR &, we say that o is a second-branchification of (& ,(d))), or that (&,(®;)) is a

branchification of o of length 2.
Further, we define:

A n-iterated possible colimit (or n-pc) o is the pc " (d —0) of a pattern recognizer @& each
object of which is itself a (n -1)-iterated colimit. A n-branchification of o is the data of a decomposi-
tion V5(0) of o and of a (n-1)-branchification of each component of this decomposition.

Now a category t-K is hierarchical if its objects Ob(t-k) are partitioned in a sequence of com-

plexity levels 0,1,...,m (see (19)), so that an object oe Ob(0-T'y), T'k e{l“i},of level m+1 is the pc of at
least one the PR formed by linked objects o; of level m.

A morphism feMor(t-X) between two objects 0,,0,eOb(t-K) of level m +1 is called an n-
simple link if f is a dart of a singleton S(&:,d)) between two PR @&, andd of level less or equal to

m. A morphism fe Mor(t-x) is a n-complex link if it is the composite of m-simple darts non-adjacent
singletons, so that it is not n-simple.
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A m-book (or m-catmanifold) is called if for each m, there exist objects oe Ob(0-T'y), I'k

e{l"i}, of level m+1 which admit non-equivalent branchification of level m.
Theorem 3. The existence of m-complex links necessitates that the category t-x satisfies:

(i) For each m, there exist m-books beOb(0-I'y), I'« e{I‘i}, of level m+1.

(i) An object 0eOb(0-T'y), Tk e{Fi}, of level m can participate in several PR @& having dif-

ferent n-pc at level m+1.
Proof is in [2],[5]-[7].

A height of complexity of an object 0e Ob(0-T'y), T'k e{Fi}, is the smallest h such that there
exists a pattern of linked objects of level h with o as its possible h -colimit c* (@&—-0). And 0 is r-
reducible for each r greater than or equal to its order.

Theorem 4. An object 0c Ob(0-Ty), T« e{I} of level m+1 which admits a decomposition

Vg(0) of level m (see (19)) in which all the distinguished links multi-link L((9"), 0) are (m -1)-simple is

(m -1)-reducible.
Proof is in [5].
But on the other hand exist next the theorem.

Theorem 5. An object 0e Ob(0-T'y), T« e{I'} will not be (m -1)- reducible if its decomposi-

tions Vg(0) of level m have some of their multilink’s L((¢"), 0) which are not (m -1)-simple.
Proof is in [5].
Moreover, the next theorem is important.

Theorem 6. A category t-K from DC (18)* is a topoi T.
Proof is in [7].
7. Compound Hierarchical CaComSystems

In a CaComSystems, the transitions come from a complexification process with respect to a
strategy.

A strategy st on a SCOM DC = (Pr, t-K, T, &, {Fi}, F'(F1.i,Fal))
is the quintuple

st=(V,0,D,L,P) (20)
consists:

- aset V of “external elements” vertices of the graphs {l“i};
- a set O of objects of the category t-X;
- a set D of the decompositions Vg(0), 0O without a colimit of level 1;

- a set L of a multi-link L((¢"), 0);

- aset P of PR & with a pc to the decompositions Vg(0).

The Compound Hierarchical (CH) cH of CaComSystems DC (18)* with respect to the strat-
egy St (20) is building CaComSystems DC* in which St are realized in the most minimal way. In other
words, DC* no contains DC. is building CaComSystems DC* in which st are realized. The illustration of

CHsees in figure 5.
An important result is the next theorem.

Theorem 7. The reduction process from theorems 3-4 with strategy St (20) cannot be reduced
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to a unique a compound hierarchical cH for DC (18)* with nontrivial components in (18)*.

Noogkow

pa3BUTh CYIIECTBEHHO HOBBII
croco0 TOCTPOEHUsI TEOPUH Ka-
TETOPHBIX BEMmcIeHuit. Obpa-
IMEeHHe K HSTOM TeMe BBI3BAHO
KEJaHUEM pPAacCMOTPETh OIpe-
JIeNIEHHbIE TITyOOKHE MPOOIIEMEI,
BOZHUKAIONINE TPH HIyUCHUH
TEOpUl MPOCTPaHCTBA U BpeMe-
HU B KBaHTOBOW W MaTeMmaruye-
ckoit 6monoruu. Tomoc — oco-
ObIif TUNT KaTeropuu. TOMOCHBIN
noaxon K (opMynHpoBKe Teo-
puii nHGOpPMATUKH CO3IaeT HO-
By10 (hopMy JIOTHKH B MH(OpMa-
THUKE. MBI IPEACTABIISIEM JIOTHKY
STOW TOMOCHOW WH(OPMATHKH,
BKJIFOYAasi HEKOTOpPHIE HOBEIE pe-
3yJbTaThl, U CPAaBHUBAEM €€ CO
CTaHAAPTHON MHTYULIMOHUCTKON
JIOTHKOM, oOparmmasch K KOHIIEH-
TyallbHBIM TpoOsieMaMm. BaxHo,

4qTo

TUKU UACT C ACHBIM TI'C€OMCTPHU-
YECKUM NOAKPCIICHUEM.

YHUCJICHUC, KaTCTOpHs, TOIOC.

Proof is in [5-7].
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I'pumcax-I pénep B.B., [ pumcak-I pénep IO.
KateropHbie BbIYMCIUTEIbHbIE CUCTEMbI

Orta craThs ABjsgercs Bropoit (mepsas — [1]) B psamy, 1edb KOTOPOTO COCTOUT B TOM, YTOOBI

TOIIOCHAsA JIOTHKa I/IH(I)OpMa-
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