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This article contains the main results. 
1. There exist a DNA-RNA mechanism X such that for all NP-full problems p, 

(i) p are solved; 
(ii) ∀ p is solved in polynomial computational time. 

2. There exist a 2-Band Linear Cellular Automata (2LCA) such that for all NP#-full 
problems q, 

(i) q is solved in polynomial computational time. 
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1. Introduction 

Computer's mathematical constructions make possible to estimate theoretically the complexity 
of solving on computer problems. Assume that the entering into computer information volume is ex-
pressed by some unified measure, for example, in bits. Then the algorithm of problem decision is ac-
ceptable if the decision time, expressed, for example, in steps number of Turing machine, polynomial 
depends from input information volume. But for the overwhelming majority of problems have been 
not succeeded in to construct the algorithms with an acceptable computational complexity. Moreover, 
properly from [1, 2] the choice is highly improbably within the framework of classical recursive 
schemes.  

2. Matroids 

We begin with definitions. 

A matroid 2 is a pair    , where a finite set  and a set  of independence subsets 

  2; here a set  such that 

(1)   ; 

(2) (b1  b2)  (b2 )  b1 ; 

(3) (b2 b1=1)  (b1,b2 )  (b2  b1)  (b1    ). 

Suppose     is a matroid and = n. A matroid     is called representable 

over a field K if there exists a matrix K such that K= m  n and K-coefficients belong to K 

such that exists a bijection      col
K , where  col

K  is the columns set of a matrix K and a subset 

0   is independent in  iff 0 is linearly independent in K. We shall say that a representable 

matroid  is called ternary if K  GF(3). 
Correctly are the following propositions.  

Theorem 1. See 3. Suppose     is a ternary matroid and  = n. M is unique repre-
sentable over GF(3). 

3. Genetic Information and Matroids 

The genetic information of living organism’s majority is contained in DAN-molecules. At the 
beginning the information "is rewritten" on RNA-molecule and in what follows is realized in protein 
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receiving 4. The realization process in factor RNA-informational — protein is written in the code 

representabling by 4-valued matrix size 22  3, see table 2. The columns "end" and "end 2" of infor-
mation are excepted. The map 

f: Ala, Cys, . . ., Trp, Tyr  Codons (1) 
is ambiguous. For example, f: Arg  ((3,4,3), (3,4,4), (2,4,4), (2,4,3), (2,4,2), (2,4,1)), see table 1. In 

table 2 the amino acids takes a codons to the equivalent codons and by replace the rules for the change 
of positions in genenetical codons, see table 2.  

Table 1. 

1st position 2nd position 2nd position 2nd position 2nd position 3rd position 
 U C A G  

U Phe Ser Tyr Cys U 
U Phe Ser Tyr Cys C 
U Leu Ser End End 2 A 
U Leu Ser End Trp G 
C Leu Pro His Arg U 
C Leu Pro His Arg C 
C Leu Pro Gln Arg A 
C Leu Pro Gln Arg G 
A Ile Thr Asn Ser U 
A Ile Thr Asn Ser C 
A Ile Thr Lys Arg A 
A Met Thr Lys Arg G 
G Val Ala Asp Gly U 
G Val Ala Asp Gly C 
G Val Ala Glu Gly A 
G Val Ala Glu Gly G 

Table 2 (U  1, C  2, A  3, G  4). 

Position Ala Cys Asp Glu Phe Gly His Ile Lys 
1 4 1 4 4 1 4 2 3 3 
2 2 4 3 3 1 4 3 1 3 
3 3 2 2 3 1 3 2 3 3 

 
Pos Leu Met Asn Pro Gin Arg Ser Thr Val Trp Tyr 
1 1 3 3 2 2 3 3 3 4 1 1 
2 1 1 3 2 3 4 4 2 1 4 3 
3 3 4 2 3 3 3 2 3 3 4 2 

 
These results can be summarized as following. 

Theorem 2. A matrix 0 size 183 described above is the matroid representability matrix over 
GF(3). 

The matrix 0 and proofs for theorem 3 are found in ] and 6]. 
Continuing in the same way, we prove 
Theorem 3. Let f be given by (1). We have linear cell automata C = (D, f, end, end2), where 

D is DNA-molecule, f is stand function of C, end is beginning information and end2 is finishing of 
information. 

Detailed see in [7].  
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4. Complexity 

The notion NP-complexity is a great invention of computers. The NP-full is supercomplexity 
of computational problems. Note that a calculation C has NP-full complexity, then t(C) is large, where 
t(C) is a computer computational time (CCT).  

Theorem 4. [See 8]. The ternary matroid recognition problem is -full. 

5. Topoi 

The topose theory development was leaded to creation of "non-classical" recursive theories, 
which have more broad computational possibilities. In particular, the following proposition is correct-
ly:  

Theorem 5. Exists a topos T for recursive theory over which is valid 

   ,  (2) 

where  and  — respectively, are analogs of - completeness and polynomial computational 
complexity over T [9]. 

6. NP*- full 

The notion NP-full can be generalized and on the sufficiently big finite totalities. The corre-
sponding reduced notions we'll denote by P* and NP*-full (P# and NP#-full) recursive classes (automa-
ta cell computed). Is correctly the following proposition? 

Theorem 6. A ternary matroid recognition problem is *-full.  

7. Superpower Computational Mediums 1. 

In a similar way to classical recursive theory, the theory of computational complexity over 
toposes is reduced on the sufficiently big finite totalities. 

One of perspective way of the new computers creation is based on theoretical principles of cell 
automates (CA) direction. At the last time here is a big progress, see [10, 1] including a creation of 
real acting systems. From the pure theory of complexity computations point of view, the CA are the 
systems in which a number of processors can change with each iteration including unlimitedly grow. 
But in the real problems decision a number of active cells (corresponding to the working processors) is 
constantly or sufficiently restrictedly. That make possible to hope on creation of completely satisfacto-
ry algorithmic software CA.  

CA is a sufficient universal model of recursive theories. Really, if by  is denoted a topos for 
which is fulfilled (1), then is correctly the following proposition. 

Theorem 7. [9] , [1]. Flat CA having a finite number 
of cells states and forming a finite configuration of active 
cells can be realized a recursive theory over the topos T.  

Theorem 7 points to theoretical possibility of com-
puter creation having more broad computational possibilities 
compared with "classical" computers, that is computers in the 
basis of which is used a "classical" recursive theory. Theo-
rems 1–5 point to possibility in principle of similar computer 
creation.  

8. Superpower Computational Mediums 2. 

Linear Cell Automata (LCA), when it goes beyond 
the very elementary level of the General Cell Automata, 
makes considerable use of the results of DNA-Automata, as 
we remarked in the p.42.  

Let A = (a1, . . ., ai, . . .)   be a set, whose elements will be called codons. Let M(A) be the 

 

Figure 1. Cell digraph. 
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free monoid generated by A. The elements of M(A) are called g-words (genetic words) and are identi-
fied with finite sequences 

S = a1 a2 . . . as # ,  (3) 

where ai A, i = [1,s], # = end or end2. We recall that the length l(S) of g-words (3) is s. The composi-
tion in M(A) will be written multiplicatively, so that 

S1  S2 = a1 a2 . . . as # b1 b2 . . . br #,  (4) 

is the sequence obtained by juxtaposition of S1 = a1 a2 . . . as # and S2 = b1 b2 . . . br #. 

The 0-words  =  is the identity element of the monoid M(A). We are given a map 
S1 
w: A  N, 

where the set N is positive integers. w(ai) is called arity of the codon ai. For each non-null word  
S = a1 a2 . . . as #, we put 

w(S) = 
1

( )
s

i
i

w a

 , 

and w() =0, w(#) = 2. w(S) is called the significant of the word S. If S1 = S ‘ S2  S’’, the word S2 is 

said to be a segment of S1. If S1 = S2  S3  S4 S5  S6, the segments S3 and S5 of S are said to be dis-

joint. We say that triple ل = (A, ζ , U) has cell universe, if there is given an injective map 

ζ :#, A  U U2  . . . Um,  

where U is non-empty set, A = (a1, . . ., ai, . . .)  , and m is maximal arity of codons for A. The set U 
is called a vertices cell (v-cell). Cell digraph Γ is an ordered pair 

 = (V, E), V = A \ {#}, E  VV  (5) 

wherе V is а nonempty set called the set of vertices of Γ; E is a subset disjoint union from V, called 
the set of arrows of Γ if the following conditions hold: 

(1) xV, (x, x)E; 

(2) x,yV, (x,y) E (y,x)E. 

Before, if e = v1, v2E  e* = v2, v1E, v1,v2 V. If e = v1, v2 arrow of Γ, v1 

def

 +e is called the 

initial of e, and v2 

def

 -e are called the terminal of e. 

Let Γ = (V, E) is cell digraph (5), Vh  V, Vy  V, and D(Γ) is the set of all directed walk 

l( v1, vn+1) = v1 e1 v2 e2 v3. . . en vn+1, where v1Vh , vn+1Vy. There is given a map : E  , , . 

. . , 
1

d

i
 . The set  is called an arrows cell (a-cell). Vh and Vy are called an input and an output. 

Sekstant  

CL = (Γ ,  , ψ , Vh, Vy, d)  (6) 
is called 2 -Band Cellular Automata (2CA). Further, the word S = a1 a2 . . . as # is induces 2LCA (6), if 

a1Vh, asVy, ζ#  UU2, ζai  UU2, (ai,ai+1) E, (ai,ai+1)  (, ). Here, CL 
is called 2 -Band Linear Cellular Automata (2LCA). Suppose W 2

CL  is the set of all induces 2LCA 

words. W 2
CL  is called a Induces 2LCA Languages. 

Detailed definition will be the objects of books [2, 3].   
Examples of W 2

CL : 
1) English. 
2) [See 2, 3] Ukrainian. 
3) [See 8] Transcription and realization genome-information.  

Theorem 8. [2]. 2LCA is computational full. 
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Moreover 
Theorem 9. [10]. 2LCA is logical full. 
Proposition. [Bixby, R.E. 1979]. A matriod M is ternary if and only if it has no minor iso-

morphic to any of the matroids U2,5, U3,5, F7, F 7
 , where U2,5 is the uniform matroid of rank 2 on 5 ele-

ments, U2,5 is the uniform matroid of rank 3 on 5 elements, F7 is the matroid Fano on 7 elements, F 7
  is 

the dual matroid to matroid Fano on 7 elements. 
Our main result is the following. 

Theorem 10. Suppose M is a matroid; then exist the 2 -Band Linear Cellular Automata Ω of 
P#-solution the following problems: 

1) M has minor U2,5; 
2) M has minor U3,5; 
3) M has minor F7; 
4) M has minor F 7

 . 
Finally 
Consequence 1. Suppose π is problem of recognition submatrix M0 in Theorem 2; then exist 

the 2 -Band Linear Cellular Automata Ω of P#-solution of this problem. 
Consequence 2. Exists the 2-Band Linear Cellular Automata Ω for recursive theory over 

which is valid 

#  # ,  (7) 

where # and # — respectively, are analogs of  — completeness and polynomial computational 
complexity over cell automata [10]. 
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Гритсак-Грёнер В. В. 
Биокомпьютеры 1 

В статье предложены следующие результаты.  
1.Существует ДНК-РНК вычислительный механизм X такой, что для произвольной NP-полной проблемы 

p: 
(i) p разрешима; 

(ii) ∀ p разрешима в полиномиальное время. 
2. Существует 2-ленточный клеточный автомат (2LCA) такой, что для произвольной NP#-полной 

проблемы q: 
(i) q разрешим в полиномиальное вычислительное время. 

Ключевые слова: компьютер, геном, клеточный автомат, матроид, категория, NP-сложность. 


