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The idea of a “Combinatorial Chaotics” or Chaotic was as is well known, originally
suggested by V.V. Gritsak-Groener in his pioneering article [1]. In this article we construct a
control for combinatorial chaotic. The control of the flows in chaotic graphs have direct
interpretation in terms of control combinatorial chaotic. The limiting cases are such
representations follows straightforwardly. Furthermore, the degree of chaotic is determined for
large classes of a combinatorial chaos. We also construct the computational algorithms of this
the problems.
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Miit npysxe, 3HaIO 5 TaBHO,

[ITo ckopo HAC KUTTA JiCTaHEe...

I cepue B 3emitro 3arpe0yTh

I B>xe HIYOTO HE MOBCTaHE.

Komnu 3ynuHuMcs B myTi,

AG0 3aHypHUMCS B TYMaHax,

Tu BiAMOYUTE 10 MEHE WIH,

A s — 10 Tebe, apyr 6axkaHuit!

B. B. Ipimcax-Ipoenep “Icanom 1”

1. Glossary

1.1.
Let A, B be the sets. The map &: A—— 2° is a multimap (mm)
F: A=—t—p B, (1)
A is called an image for #and B is called a preimage for & . The multimap & is said to be a

simple multimap if | #o) | <1 for all acA. Fis called a full if | FHa)|= @ for all acA. The full mm
Fis called a injection if o # B = FHa) = HPB), where o, A. Consider A; < A. The union

FAA) = U Ho)

aeh
is called a view for . mm Z'is a surjection if #A) = B.

Let %1, %, ®, © are a mm A==t==p A ocA. By definition, put:
(i) (FnF)a “ Fi(o)n F(w);
(ii) (F U F)o @ (o) U Fa(0);

(i) (FiF)o. @ Fi(Fa(w));

(iv) ®a® o;
v) @™ .
Let Fis the mm & ;. A==ti==p> A. The pair
g=F A (2)

is called a control graph & of mm & The elements of the set A are a nodes of &.
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The pairs u = (a, #Ha)) are called an arrows of &, where the a is a tail of u and &a) is a spike of u.
Let N denote the set of natural numbers. For neN, put
N(n)={keN: k<n}. (3)
Suppose mm ¢ : N(n) ==c==p A is a surjection. By A; denote ¢(i), where ieN(n). An indexed family of
sets R (or indexed family or ifa) is a pair
(N(n), ¢)
and is denoted by
R = (A : ieN(n)). (4)
An indexed family R is called a personal family if A; # A; when i # j. The personal family (3)
is called a partition of the set A if the following conditions hold:
(i) wW(A) =D when ieN(n);
(i) Ain Aj= I wheni,jeN(n)and i #J;
@)y U A=A

1<i<n
R (3) is called a structure if the
following conditions hold:

(a) U AieR;
1<i<ng 1<np<n
® |J Aex

1<i<ng 1<np<n
By definition put A° = A\ A . A family
sets S°= { A": ieN(n)} is called a complement
oftheifaS={A:ieN(n)} AifaS={AiieN
(n)} is called a self-complement if from A;eS it
follows that A®° = A\ A, = A, €S.
Suppose

= (A : C, ieN(n)) Fig. 1. Dmytro Pollack. On the same topic.(5)
is an indexed family such that
(1) WG =9,
(2) if Cic Cj =C;= Cj when i ¢j.
We call &#£a chaotic on the set A, where see figure 1.

A chaotic &#0on the set A is the chaotic of circuits of a matroid % (see (5)) on the set A if D¢
¢ and € satisfies the elimination axiom :

(ax) whenever Z' # Z?e€ and Asa.e Z' N Z7, there is a Z°e€ with Z°c 72 U ZA\{a}.

7 = (€ ={Z} : ieN(n)) (6)

1.2

Let A, B beasetsand #: A =—d==p-B is a multimap, & # d c B.

Consider a set #*(d) ={a.c A| A ) N d = J}. By symbol %(d) denote {acA| Ao)  d, F (o)
# J}. Suppose d = J; then 7*(d) = Z(d) = &. Z*(d) is an upper inverse multimap and Z(d) is a lower
inverse multimap. Similarly, 7(d): B ==g==pA, F(d): B ==c==p A are the multimap. By definition,
we have %(d) < Z*(d). The subset d is called a dense if Z7*(d) = Z(d).
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Lemma 1. Suppose & : A ==t==p-B be the full multimap, r ¢ A, d, d;, d, < B; then the following
conditions are fulfilled :
O reFgF0);
(2 doFF(d);
(3)dn F(A) c F&(d);
(4) rc FF(n),
(5) (F(d))° = &F(d°);
(6) #(d)° = #(d°);
(7) &(d; Udy)=(d;) UF(dy);
(8) #*(d1Ud,)oF* () UF*(dy).

Proof. This lemma can be proved by direct calculations.

1.3.

¢\
“o > B”. Then it is to define “B > a” by “a < B and “o ~ B” by Fig. 2. Anatoly Fomenko.
“a» B”, “B > a”.a > B” by “a > B~ but not “a ~ B”. A binary |The inverse multimap

it
relation (on A) is a subset > of A x A. Frequently we write “a > B” < (a,B)e> when a,BeA.

A suggestive way of writing “a is preferred to B is

If a > B, then we shall say a is preferred to . A binary relation on A is called
1) reflexive if a > «,
2) complete if o > B or B > a holds true for any (a,p)eA x A,
3) transitive if a > B, B >y implies a > y (o, B,yeA),
4) symmetric if a > B implies B > «,
5) antisymmetric if a > B, B > y implies a=p,
6) asymmetric if a > B implies that B > o does not hold true.

A binary relation > on A is called a preference if > reflexive, transitive, and complete.

Let > be a binary relation on A. Then an acute hull >> of & there exists a sequence o = oy, . . .,0,=p
such that o, > ai.q (ieN(n-1)).
For every fixed a*cA let 3>, a*) = {acA : oa*> o}. Similarly, 3(> , a*) = {aeA : a*> o}
Let U is a finite set. A digraph D is a pair is a pair D = (U , >). A ditree dT is a digraph (U , >) such
that there exist an element a®cU (to be called a root of the digraph) having the following properties:

a. o >> a° (ael),

b. 3(>,a°) =9,

c. (3>, a)) =1 (a=a°).

The elements of the set U are a vertex of dT. The pairs u = (o, B) are called an arrows of dT

if S(>, o) = B.
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2. Control

2.1

Let A be the finite sets.
We shall say that the chaotic

H=(A:Ci,ieNM)

(7)

is a controlled chaos H, where [i]eN(n) is a controller, the index family (C; , ieN(n)) are a territory of
the controller [i], and Z = {[1], . . ., [n]} is a control-brigade (or brigade). The elements of set A are a

position of control for chaos H, A is a position-set.

Suppose the pair (Z*, Z?) is partition Z when Z" are an active controllers, and Z? are an pas-
sive controllers. We shall say that for the chaotic H there exists a control if the following conditions

hold:
(a) we have a multimap

QA =l A
then this is called a law of the control;

(8)

(b) for any [i] there exists a preferences i, then this > is called a preference of controller [i].

def

Let Cy = (a: Q(a) = &) and using a transformation of Q we get Q(Cy) » Cy = &, where kKeN(n).

Suppose axeA be a beginning element of position. We shall say that a brigade Z = {[1], . . .,

[n]} exerts control over the chaotic H if the following steps hold:

@) let ([i], «--s[ils ---[l]) # D (1< i < ... <j<...LILN) is maximum
allowable of controller number such that Q(o) N C; # I,

where te(i, ..., j, ..., I) whence the controller [t] choose ele-
ment of position %! e Q(ay), control is continue and we have

the controllable positions o, 1, ..., &, ..., ;
(2) it ([i], .-s[J]s ---5[1]) = D the control is finished;

(3) lette(iy veuy jo vuey D), 1T (1], ovs [ir@]s «eeslials «oes Dirpls +=eollal,
wollip]) # @ is maximum allowable of controller number
such that Q(*)) N C, # &, where ti€(is, «vy iry +erslits =ens

JrG)s «esl1s «olry) Whence the controller [t] choose element of

position % e Q(%;),control is continue and we have the con-
trollable positions

(4) /0
SN

Figure 3. Fritz Grosz. Controller

)

(1) if ([id, ..., L) ---50a --o5 Ol -~ 5[], ---5[hp]) = < the control is finished;
(2) and so on, as so long the controller induce the nonempty positions in the ditree dT = (U , >) (9).
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A ditree dT of sampling is a oriented graph I' = (V(I'), E(I")), where V(I') is a set vertex for I"

and E(T) is a set arrows for I". A control number of a control is, by definition, the number p(V(I")) of

vertex for I' and a capacity of a control is the number pw(E(T)).
2.2.

A preference »; of controller [i] it is possibility represent such that a numerical bounded
function
fix):x— R
as follows:
a i B < fi(a) = fi(B). (10)
Then we shall say that a brigade Z = {[1], . . ., [n]} exerts control with penalty function f;(x)
over the chaotic H.
Commentary. Surprisingly, penalty function das not always happen that exist.

If a controller [i] is the active, it is customary were more preferable to position of control with
respect to i, f," (Ci) = sup fi(x) will be written in terminology of penalty function.

xeCj

If a controller [i] is the passive, it is not customary were less preferable to position of control
with respect to i, f,” (Cj) = incf fi(x) will be written in terminology of penalty function.
xeC

3. Chaotic

Let A be the finite sets. A combinatorial chaotic (or simply chaotic) on A is a family C of sub-
sets of A, such that no element of C is contained in any other. A chaotic is conveniently expressed by:
H=(A:C;,ieN(n)), (12)
where C; is a cycle of chaotic H, and the index family
C=(C;, ieN(n)
are a territory of the controller [i], and a family sets
C® =(C{,ieN(n))

is a complement of the family sets C.

3.1

Aset (B)a < A is called a closure of a subset B < A if the following conditions hold:

) Be(B)s

(i) B e(E)h\B < there exists two sequences {ay}, {Ui}, where oy €A, UieC, oy # oy,
an = B, Uy # U such that o, €U, B U(U ®.), where 1<t <k<n,

j=1t
We write it B for short.
A subset D < A is called a flat (or a closed set of H) if D =D.AflatP c A, pu(P) =1 is called

a loop < the element acA is a loop if agC; for YC;eC and the element B is a coloop if eC; for C;e

C. The minimal flat subsets RcA of are called an atoms.
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An envelope set of A is every 3(D) < A such that 3(D) = D /D.
The definition of closure implies easily the following property:

1. ForeveryDc AD <D and D =D.
2.D;,c D, = D1 cD; forall D:,D,.
3.1fD= DU% /(D U%) # @ then there is D such that DU® = DUP.

Remark: “there is” can be changed to “for all” < H is a matroid.

D < A is a spanning set of the chaotic H if D. Asubset N c A is called independent in H if
VEeC, E\N = . Minimal spanning subsets B < A are bases of H. A maximal nospannig flat subset

K < Ais a coatom of H.

3.2.

LetH=(A: C;, ieN(n)) be a chaotic, ac A be an element of H, Aq c A.
Theorem 1. H(Ao) = { Ao : Ci(Ao) , ieN(n)} is chaotic, where Ci(A) = CiN A #J.

Theorem 2. If H\a = {A\{a}, D: a¢g DeC } such that a is not a coloop of H or H \ o = {A\{a},

D\{a}: DeC } such that a is a coloop of H, then H \ a is chaotic obtained by separation of a.

Theorem 3. IfH/a = {A\{a}, D\{a}: acDeC } such that a is not a loop of H or H/a = {A\{a}, D:

DeC } such that a is a loop of H, then H / a is chaotic obtained by detachtion of a.

For the proofs we refer the reader in [1].

A minor of H is a chaotic m-H that can be
obtained from H by a sequence of m separations
and detachtions.

3.3.

A chaotic H is an atomistic if for every a

close set B c A there exists the sets of atoms R;
cA, jeJ such that

URr, =8
jed

We may assume that an julies [1] are mod-

el of granular chaos and an anthills [1] are model
of uniformly chaos. These results can be summa-
rized as follows.

Theorem 4. Let a chaotic H be a jula. If H is have
not a loops, then

u(D) =3 Figure 4. lvan Nevidomyj. Chaotic and33)

of all cycle DeC.

26 Me 3, 2012



Du3uKka CO3HAHUA U HCUSHU, KOCMOTIOZUA U acmpo¢u3uka

Corollary 4.1. There exists a polynomial complex algorithm of to see that H be a jula.

Theorem 5. Let a chaotic H = (A : C;, ieN(n)) be an anthill, B < A be an arbitrary independence

subset of H. Then there exists an element BeB such that

Be(B/{B})° (14)

Corollary 5.1. There exists a polynomial
complex algorithm of to see that

H be an anthill.

Anthills Julas

An the chaotic H is a qua- Quasirr)atroid

simatroid if H is both a jula and an ant-
hill, see in figure 5.

3.4.

Let 3=(A,, C) be a chaotic. By

dimh(3)eZ" denote a degree of disorder : Matroids
Atomics

Nonatomic

of a chaotic 3. If I is a matroid, then
dimh(3) = 0. Let 3*=(A* C*) is an |Figure 5. Types of Chaotic

other a chaotic. Further, let aeA; and
o, A*. We can assume that

| dimh(3J) — dimh(3*) | = 1 (15)
if the following conditions hold:

DI =3*\ay,
2) I =3%/ oy,
3) 3*=3J\aq, (15)*
4) 3*=3/a.
The chaotics I and 3* are called adjacent. A x-walk is a sequence L.:
31,32 S (16)

of the chaotic Jj, j =[1,m], in which J; and Jj., are adjacent, 3, is the input of L and 3, is the out-
come of L.

Theorem 6. Let H= (A, C), A #J, H; = (A,{(1,2), (1,3)}), H, = (Ax{(1, 2, 3)}) are a chaotics. A
chaotic H is a matroid <> H has not be x-walk L = 3, 3, . . ., 3, (16), where 3;=H and 3, =

H,or3,=H,.

Corollary 6.1. Suppose H = (A, C), 0<u(A)<w be a chaotic, then there exists a polynomial complex

algorithm of to see that H be a matroid.
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4. Control of Chaotic

4.1.

Many problems in physics, biology
and medicine involve determining the
measure of disorder of several objects. For
instance, a finding that a structure which
computed a degree of chaotic can approach
determining the disorderly structure of
swelling or computed a degree of chaotic of
the geotectonic structures. The figure 6
shows the real geotectonic structure con-
sisting of three bands of varying degrees of
randomness.

As is known, see [Calculate], volt-
age pulses are transmitted to the tectonic
structures, only in certain ranges of the de-
gree of chaotic. Therefore, it is necessary to
control the degree of randomness in order
to prevent the consequences of an earth- o : ’ '
quake or transmission voltage pulses from |Fig. 6. Image showing three types of the geotectonic
the outside. texture. Miilhausen, Switzerland

4.2.

Consider the algorithm for solving the problem of controlling the degree of chaotic.

Let A be the finite sets, Aq = A, the chaotic H = (A : C;, ieN(n)) is the controlled chaos and
the chaotic H(A,) = { Ao : Ci(Ao) , ieN(n)} is the position of a beginning control, Z = {[1], . . ., [n]} is
a brigade of active controlled.

We control the chaotic H were taken control sequence from 1 to n if the following conditions

hold:

(1) By = Ag;

(i) suppose Ci(Ao) # J; then (iii); if Ci(Ao) = I; then (ii);

(iii) suppose exists {ai}, {Ci(Ao)}, where a;e Ci(Ag) such that Ci(Ao) <Bi1J @i and Ci(Ao) &
Bi.1, Bi = Bi.g; then (ii).

Theorem 7. B, = A, .

Algorithm 1 builds a closure of a set in chaotic.
Theorem 8. If H(A, ) = H, then | dimh() — dimh(H( A, )) | = 0.

Further if the chaotic H(E) = H, then we connect the four passive controller

Z:=zZU{J, An, Q, M},

where a controller J verify “the chaotic H(E) is a jula®, a controller An verify “the chaotic H(E) is
a anthill“, a controller Q verify “the chaotic H(E) is a quasimatroid®, a controller M verify “the cha-
otic H( E ) is a matroid®.

Finally if the chaotic H(E) # H, then we connect the four active controller

Z :=zZUA{[n, [, [y, vz,
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where a controller [I] construct the chaotic H(E)\ oy , a controller [11] construct the chaotic H(E)\

o, a controller [I11] construct the chaotic H(E)/ocl, a controller [1V] construct the chaotic H(E) /o,

see (15) —(15)*. The brigade {[1], [I1], [111], [IVV]} check for exists the sequence 3, 35, . . ., Im (16),
where 3, = {Aq, (1,2), (1,3)} or 3, = (A2, {(1, 2, 3)}). Thence
dimh(H) > dimh(H(Ap)) + m + 1. a7)

If 3= {As (1,2), 3.4)} or 3, = {A4 (1,2)}
Thence

dimh(E) = dimh(H(Ao)) + m + 1. (18)

4.3. Algorithm “Closet”

Listing procedures in pseudocode is as follows:
Input: Om
find:
nom — number of cycles;
A — elements of A-set (union of all cycles);
nA — number of elements of A-set;
T = Om (so all circuits coincide with cycles);

nmax = min(nom,nA) — (maximum length of f-sequences);
for kom=1:nom — build the circuit each cycle;
find:

AmOm = A\Om (kom) - additions to the current cycle;
nAmOm - number of elements complement AmOm;
for knAmOm=1:nAmOm - check each item;
find:
b = AmOm (knAmOm) - an item thatis checked;
for n=1:nmax - build f-sequence of length n;
find:
ap - all placement of length n for a(i); Thisis a two-dimensional array, its
every row is one placement of nA elements by n;
omp - all placement of length n for t(i); This is a two-dimensional array, its
every row is one placement nom elements by n;

for ia = (all rows of the ap array) - begin to check the definition of closing;
find:
a - sequence a: Picks of the elements from the main A set with the numbers that are giv-

en in the row number ia from the ap array;
if a(n)=b -firsttest whether the same last element of the sequence with b?
for iom=1:(all rows of the omp array) -inthiscase, keep checking;
find:
ntau - numbers of r-sequences: row number iom array omp;
ClipYes = True -tocheck
for i=1:n -firsttestentry
if a(i) €Om(ntau(i)),
ClipYes = False -notsuitable
break - exitfrom the cycle "fori";
else - a(i) €1 (i) - continue the inspection;
find:
B = Om(kom)U (Ua(j)):
B = Om(kom) - askthe original B;
for j=1:1i,
B = BUa (j);
end - setB
if Om(ntau(i)) &B
ClipYes = False -notsuitable
break - exitfrom the cycle "fori";

<

Om (kom)\U (UJa (j) ) has been created
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end

if ClipYes = True - everything fits

T (kom) = T (kom)Ua - attach element to circuit
break; leave the cycle foriom

end
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lNocniecriosue aesmopa.

Haubonee agexBaTHBI Halleld MOJIETN r€OTEKTOHNYECKHE CTPYKTYphl. OHH, B 3aBUCUMOCTH OT
CTETIeHN UX XaO0THYHOCTH (M COBEPUIEHHO BHE 3aBUCHMOCTH OT UX IUIOTHOCTH M XMMHYECKOTO COCTa-
Ba) MOTYT NPOBOAMTH WM HE MPOBOJAUTH CUTHAIIBI, BOJHBI INIOTHOCTH. DTO HOPOXKIAET y JTIOOUTEIeH
rTyOOKOM MOA3eMHOM CBS3M HCKYIIEHHE HCIIONb30BAaTh HAIl MPEKPACHBIA, YIOTHBIH M HE TaKOW yxK
OO0JIBIION 3eMHOU MapuK B KauecTBe Teyierpada Juist MOChUIKKM COOOIICHUH, HE BCET/a C MPUSATHBIX.
VMeHHO Ha 3TOHM MOYBE MOSIBUJIMCH MOWM KHHMI'M C MOMMH JIOPOTMMHU mpodeccopamu AJEKCaHAPOM
Cepreesuuem JasbinoBeiM u ['eopruem Tpodumonuem IlponaiiBoga. Mel Bcerna ObUTH IOJIHBI MO-
HUMaHHs PUCKOBAHHOCTH pa3BUTHUS 3Tod TeMbl. Ho ecnu 'ocrionp noBepusi MMEHHO HAIIMM TOJIOBaM
U pyKaM 3Ty TEMY, MBI CIEJIaeM 3TO.

I'pumcax-I pénep B. B., I pumcax-I pénep IO., bykanos A. B.
YupasJjieHue XxaocoM

IIpomomxkaercst cepusi U3y4deHHs] CTPYKTyp xaoca. C 3Toi pabOTHl MBI HAYWHAEM HE TOJBKO
HaOII0/IaTh XAa0TUYECKUE CTPYKTYPhI U PETUCTPUPOBATH UX CTENICHh UX XaOTHYHOCTH, HO M YIIPABJIAThH
MMH — B Hally paboThI 110 Xa0Cy BXOJHUT AMHAMHUKA. YIIpaBJICHHUE IMOTOKAMU B XaOTHYECKHUX rpadu-
KaxX MMEET MPSAMYI0 HHTEPIIPETAINI0 B TEPMUHAX KOMOMHATOPHOTO yTNpaBieHUs xaoTukamu. IIpe-
JICNIBHBIM Cy4daeM SBIISIETCS MPSMOIIMHEHOe TpescTaBneHre. Hanbomnee agekBaTHBI Halel MOJeTn
Tr€OTEKTOHMYECKUE CTPYKTYPHI. TakkKe MOCTPOCHBI BHIYUCIUTEIBHBIC AITOPUTMBI 3TOH MPOOIIEMBI.

Kniouegvle cnosa: xaoc, XaOTHK, aITOPUTM, T€OTEKTOHUYECKHUE CTPYKTYPHI.
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