The Velocity of Light: from Zero to Infinity

Yuri Arepjev

Abstract


The advancement of communication systems, ensuring the obtaining and processing data, raises necessary the question of increasing the information rate, the upper limit of which, on the base of the present-day knowledge, cannot exceed the velocity of light in vacuum. Recently, researches from many countries undertake the persistent attempts to overcome (if it is possible) this limit. The purpose of this review is acquainting the specialists, working in the sphere of communication facilities, with the modern problematics of speed light control, and representing the state of affairs as regards “superluminal” investigation at the present moment.


Keywords


information; velocity of light; superlight communication

References


Lene Vestergaard Hau, S. E. Harris, Zachary Dutton, Cyrus H. Behroozi Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397, 594-598, (18 February 1999).

M. D. Lukin, S. F. Yelin, M. Fleischhauer Entanglement of Atomic Ensembles by Trapping Correlated Photon States, Phys. Rev. Lett., v. 84, 18, pp. 4232-4235, (1 May 2000).

M. Fleischhauer, M. D. Lukin Dark-State Polaritons in Electromagnetically Induced Transparency, Phys. Rev. Lett., v. 84, 22, pp. 5094-5097, (29 May 2000).

Olga Kocharovskaya, Yuri Rostovtsev, Marlan O. Scully Stopping Light via Hot Atoms, Phys. Rev. Lett., v. 86, 4, pp. 628-631, (22 January 2001).

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, M. D. Lukin, Storage of Light in Atomic Vapor., Phys. Rev. Lett., v. 86, 5, pp. 783-786, (29 January, 2001).

Chien Liu, Zachary Dutton, Cyrus H. Behroozi, Lene Vestergaard Hau Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature 409, 490-493, (25 January 2001).

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hemmer Observation of Ultraslow and Stored Light Pulses in a Solid, Phys. Rev. Lett, v. 88, 2, 023602, (14 January 2002), Published 20 December 2001.

Raymond Y. Chiao Tunneling Times and Superluminality: a Tutorial, quant-ph/9811019.

G. Nimtz, A. Haibel «Basics of superluminal signals», physics/0104063.

A. Ranfagni, P. Fabeni, G. P. Pazzi, D. Mugnai Anomalous pulse delay in microwave propagation: A plausible connection to the tunneling time, Phys. Rev. E, v. 48, 2, pp. 1453-1460, (August 1993).

Ch. Spielmann, R. Szipöcs, A. Stingl, F. Krausz Tunneling of Optical Pulses through Photonic Band Gaps, Phys. Rev. Lett., v. 73, 17, pp. 2308-2311, (24 October 1994).

W. Heitmann, G. Nimtz Phys. Lett. A 196 (1994) 154.

Ph. Balcou, L. Dutriaux Dual Optical Tunneling Times in Frustrated Total Internal Reflection, Phys. Rev. Lett., v. 78, 5, pp. 851–854, (3 February 1997).

Vladislav S. Olkhovsky, Erasmo Recami, Giovanni Salesi, Superluminal effects for quantum tunneling through two successive barriers, quant-ph/0002022; Vladislav S. Olkhovsky, Erasmo Recami, Jacek Jakiel Unified Time Analysis of Photon and (Nonrelativistic) Particle Tunnelling, and the Superluminal group-velocity problemy, quant-ph/0102007; S. Longhi, P. Laporta, M. Belmonte, E. Recami Measurement of Superluminal optical tunneling times in double-barrier photonic bandgaps, quant-ph/0201013; J. Jakiel, V. S. Olkhovsky, E. Recami On Superluminal motions in photon and particle tunnellings, quant-ph/9810053.

L. J. Wang, A. Kuzmich, A. Dogariu Gain-assisted superluminal light propagationm Nature, 406, 277–279, (2000).

Yukiko Shimizu, Noritsugu Shiokawa, Noriak Yamamoto Control of Light Pulse Propagation with Only a Few Cold Atoms in a High-Finesse Microcavity, Phys. Rev. Lett., v. 89, 233001, (2002).

D. Mugnai, A. Ranfagni, R. Ruggeri, Observation of Superluminal Behaviors in Wave Propagation, Phys. Rev. Lett., v. 84, 21, pp. 4830-4833, (22 May 2000).

I. Alexeev, K. Y. Kim, H. M. Milchberg Measurement of the Superluminal Group Velocity of an Ultrashort Bessel Beam Pulse, Phys. Rev. Lett., v. 88, 7,073901, (18 February, 2002).

Raymond Y. Chiao, Jandir M. Hickman, Daniel Solli Faster-than-light effects and negative group delays in optics and electronics, and their applications, quant-ph/0103014.

Н. С. Бухман О реальности сверхсветовой групповой скорости и отрицательного времени задержки волнового пакета в диспергирующей среде, ЖТФ, том 72, вып. 1, с. 136-138, 2002.

Басов Н. Г., Амбарцумян Р. В. и др. // ДАН СССР. 1965. т. 165. № 1. С. 58–60.

Крюков П. Г., Летохов В. С. Распространение импульса света в резонансно усиливающей (поглощающей) среде, УФН, т. 99. № 2, с. 169-227, 1969.

А. Н. Ораевский Сверхсветовые волны в усиливающих средах, УФН, № 12, 1998.

Anisovich K. V. The Relativistic Superlight Signal Carrying Information, “Problems of high energy physics and field theory (Proceeding of the XIVworkshop)”, Moscow, “Nauka”, 1992, p. 57–64.

David Deutsch The Fabric of Reality, Penguin Press, 1997.

Арепьев Ю. Д., Буц А. Ю., Олейник В. П. К проблеме внутренней структуры электрически заряженных частиц. Спектры внутренней энергии и распределение заряда свободного электрона и атома водорода. — Киев: ИП АН УССР, Препринт № 8 — 91, 1991. — 36 с.

Oleinik V. P. The Problem of Electron and Superluminal Signals. (Contemporary Fundamental Physics) (Nova Science Publishers, Inc., Huntington, New York, 2001).

Олейник В. П. Квантовая электродинамика, описывающая внутреннюю структуру электрона// Квантовая электроника. — 1993. — Вып. 44. — С. 51–59.

Олейник В. П. К теории внутренней структуры электрона. Вторичное квантование и энергетические соотношения// Квантовая электроника. — 1993. — Вып.45. — С. 57–79.

Oleinik V. P. Quantum Theory of Self-Organizing Electrically Charged Particles. Soliton Model of Electron, Proceedings of the NATO-ASI “Electron theory and quantum electrodynamics. 100 years later.” (Plenum Press, N. — Y., London, Washington, D. C., Boston, 1997), p. 261-278.

Oleinik V. P. Nonlinear Quantum Dynamical Equation for the Self-Acting Electron, J. Nonlinear Math. Phys. — 1997. — v. 4, № 1–2, — p. 180–189.

Oleinik V. P. Quantum Equation for the Self-Organizing Electron, Photon and Poincare group (Nova Science Publishers, New York, Inc., 1999), p. 188–200.

Oleinik V. P. Superluminal Transfer of Information in Eelectrodynamics, SPIE Material Science and Material Properties for Infrared Optoelectronics, 3890, p.321-328, (1998) (http://www.spie.org/).

Oleinik V. P. Faster-than-Light Transfer of a Signal in Electrodуnamics, Instantaneous action-at-a-distance in modern physics (Nova Science Publishers, Inc., New York, 1999), p. 261–281.

Эйнштейн А. Принцип относительности и его следствия в современной физике // Собрание научных трудов, т. 1. — М.: Наука, 1965. — С. 138–164.

Олейник В. П. Проблема сверхсветовой коммуникации: сверхсветовые сигналы в электромагнитном поле и их физический носитель. // Физика сознания и жизни, космология и астрофизика. — 2003. — № 1. — С. 28–54.


Refbacks

  • There are currently no refbacks.