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In this paper, we present a novel and efficient algorithm for solving direct and inverse prob-
lems that exist in chemical preparations with antivirial effects. As to the best of our knowledge, the pro-
posed algorithm being reported in this paper is the fastest algorithm published in the literature. The al-
gorithm requires that the pattern information/data to be provided as input in the form of a graph. Most
other published algorithms do not have this as a requirement. The algorithm is based on a topos classifi-
er of topos proximity space construction. This algorithm is very effective for pattern recognition prob-
lems with given geometric and numerical characteristics. The algorithm’s effectiveness is illustrated by
solving the problem of computing/finding the chemical molecule structure which is used in anti-AIDS
preparations.
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1. Introduction

In this paper we propose an algorithm and methodology that computes:

a) Proximity measure between two objects represented as a graph in pseudomeasure inducing
from all possible topologies and all the finite graph spaces (direct problem);

b) In all possible graphs space, the algorithm finds all possible graph objects that differ from
a given graph by a distance of 0, 1, 2, ... (pseudomeasure in integer calibration).

This problem was first introduced in

[1[. A solution to it was recognized after the
publication of article [2]. The work published
covering neighbourhood

in [1] and [2] were then used in applications
such as pattern recognition, chemical design
and computational methods in pharmacology

[3].

It is important to note that for graph
structures having a groupoid characteristics, the
proposed algorithm and methodology have a
wider use in a broader set of applications [4].

A number of biological and chemical
systems, like two-sided coins, such as chemical
structures, and viral infections are considered
as statistical patterns. Such considerations do
not correctly represent many important cases
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Fig. 1. The direct and return problem

and applications.

It is well known, however, that the behavior of many atoms biochemical molecule and large
population groups elements often is pliable to exact predications with help of single graph stereo-
structure taking account of graph kinetics.

Physical-chemical properties of the majority of chemical molecule and population depend on
the structure of respective molecular graphs or graphs of mutually relations between population’s ele-
ment. This simple observation serves a basis for creation of fruitful and rapidly developing trend of
theoretical chemistry and biology with a motto:

“structure — property”.

A pharmacological method is the most direct way of struggle against illness virus. Unfortu-
nately, this direction have been confronted with the great difficulties among them:

a) an extremely great computations volume connecting with the chemical structure choice for

anti-virus preparations;
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b) abig velocity of virus mutational variability (especially HIV-virus).

The above mentioned difficulties multiply the process of pharmacological preparations devel-
opment. Therefore, a pharmacological chemist runs into a chosen solution/selection from several hun-
dred millions of variants to optimal chemical structure and following “in vitro” test.

One of the interesting trends is the process of considering the description of chemical mole-
cule similar to the given one by the totality of physical-chemical, pharmacological and other structure
of the respective molecular graphs, conformations, hirality, etc.

Our suggested approach makes it possible to study random structures, the assigned structures
and that assigned by the graphs, as to their structural proximity. The great number of such problems
arise in the mathematical theory of pattern recognition and stochastic geometry.

2. Basic Idea

The main scheme of the Microscope Algorithm (MA) is based on the next propositions.
Suppose # is a pattern and « is an image. Consider the following steps of MA:

1) Using a distance concept of a topoi, if we get Distance(,«& ) ~ 0, then the patters
is equals the image « .

2) Using a distance concept of a topoi, if we get Distance(#, ) > 0, then the patters
is not equals the image « .

Example 1

So, in a fig.2 are
shown the structure formu-
las: at the left — the amino

acids triptofan (C1;H1,N,0,) "o 0 M
and on the right — the medi- Tehg

cine azidothymidine (AZT, i
C10H13N504), which have !

among themselves distance M A

0.

Fig. 2. AZT (on right) belongs to a 0-neighbourhood of triptofan
3. General Condition (on left)

Without loss of generality it can be assumed that:
1) V objects is finite;
2) V pattern is defined a Input Information Graph (11G);
3) V IIG is connected,;
4) V categories is defined of sketch (see [3]).
Definition. A topoi T is a category
T = ( Mor(T), Ob(T)),
such that:
a) T is finitely complete and cocomplete;
b) T has exponential.
5) (Forevery a, b € Ob(T) exist object b[[a]] € Ob(T) and morphism

ev:b[[a]] xa—> b
is commutative).
¢) T has asubobject classificatory.

(For every monomorphism f: a— d, f € Mor(T), exists every one morphism

x[f:d— Q
is Cartesian square).

The object Q(T) is name a classificatory of topoi T.
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4. Foundation Principles and Theorem 1

Topoi Principle

A classificatory Q(T) is full defined every structural property of a topoi T.
Theorem 1

Let 3 is a topological space and B(3) is the category of all bundle for J; then B(3J) is the topoi.

5.Step 1
Definition
Leta graph I' = (V, W) is IIG of a pattern #, where V is the set of vertices I" and W is the set of edges
I'. We constructed the new graph = (') = (V, Wy). E(T) is called deltoid Z(I') of a graph T". V, is a
disjunctive union of vertices V, i.e. (V; = VLIV). An edge wy = (v1, vV?)e W, if and only if an edge w =

(v, Vo)eW, where vieV and the vertex VeV, is analogue the vertex v,V in the second component

We constructed the deltoid Z(T") of the graph I" = (V, W), where T" is 11G of the pattern .

Example 2

Fig. 3. The graph T (on left) and the deltoid E(T") (on right)

6. Step 2

Theorem 2.

Suppose Z(I) is a deltoid of graph I". Then there are two transitive ordering ( > and <) of Z(T'), only.
Step 2.

We constructed the transitive ordering deltoids Z%(I") and = *(I).

7. Step 3

Theorem 3
Suppose Z5(I) (or = *(I)) is the graph with in Step 2. Then there is only one finite topological space
I(EX(ID)) (or I(E<I))).
Scheme of subalgorithm for step3

Let Z5(I') = (V, E, >) is a transitive-order graph in step 2. 3(2(1)) = (V, 3(V) ) is the topolog-
ical space, where V is the groud set of Z(I') and 3(V) is a open subsets of =*(I"). Here J(V) is in-

duced by the subbasic subsets B(V) = {v u {vi}}, where v €V, v; €V are all elements V incidental to
the element v.

The topological space 3(Z2*<(I")) is constructed analogously.
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Step 3.

We constructed the topological spaces I(Z*(I')) and J(Z*(I)), respectively.

8. Step 4
Corollary of Theorem 1

If the I(23(IN)), I(E*(I")) topological space defined in step 3, then there are topoi

Jop, = Jop (I(EXD)), ), Jop, = Jop (I(E™(D)), ©),

where ® and ®* are the classificatory of topoi Jop, and Jop,, respectively.
Step 4

We constructed the topological spaces Jop,(I') = Jop (I(E(I)), ©*) and TJop,(I') = Jop(I(E
(), ®™), respectively.

9. Step 5
The following theorems are needed for the step 5.
Theorem 4
Suppose I''1(=) is a finite transitive-ordering digraph, then there is the pseudometrical topo-

logical spaces I(I' "/(>)), with a strongest pseudometric d: I(I" [1(=))x3I(I [(=)) —> Z" and d is
unambiguous.

Theorem 5

Suppose T = (Mor(T), Ob(T)) is topoi, then there is the digraph In(T) = (V+, Et), where V1 =
Ob(T) is the set of the vertex In(T) and E+ is the set of arrows In(T). The digraph In(T) is called infla-
tion graph of the topoi T. The inflation digraph In(T) is transitive ordering.
Corollary of theorem 4 and 5

Suppose Jop,(I) = Jop(I(EX(I)), ®*) and Jop,(I") = Jop(3( E *(I')), ®) are topoi deter-
mined by step 4, then there are the pseudometrical topological spaces

3,(I) = 3,(In(Sopy)) and I(I) = Ix(In(Jopy)).
Step 5
We constructed the pseudometrical topological spaces 3,(I') and J,(T).

10. Steps 6-10

Step 6 - Step 10.
Inverse transformation the detailed see in [6] and [7].

We constructed the topological spaces 3,(« ) and 3,(«d ) of topoi Jop, () and Jop,(4), re-
spectively. 4 is the image of pattern recognition in the 11G form.

11. Step 11 — The Last Step

Theorem 6
Since the step4, we obtain the finite pseudometrical topological spaces J%(3*()) and

3%3* (), where 3*(I') and 3’ (I) is the transitive ordering graphs. 3(3*(I")) and 3%’ (I')) has
strongest psevdometric, then exist the topological pseudometrical space:

3.0 = T(TFD) x TS (D), 1)
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3..(I) is the Cartesian product topological spaces of I(3*(I")) and I3’ () and J..(I)

have the strongest pseudometric. 3, .(I') is called a Structure Distanced Space of Pattern Recognition.

Step 11
Constructed the topological pseudometrical space:

I = 51((F)) X 31(1‘) and Ty = Sg(r) X 32(1“ )
Final
Finally, we get
d1 = distance ((3°(») x int"(%)),3 "’ (& ) x int>(:4)),
d2 = distance ((37<(#) x int*(#)),3°(«& ) x Int*(:4)),
where 3%(#), 37<(#), 3’ (), I() - the classificatory objects of a pattern # and an image« , and
int(m), int>(a), int’ (:4), int>(x6) - initial objects of a pattern » and an image 4 . Then
d=d1+d2 )

is distance of a pattern » and an image « . d from (2) is called an Absolute Distanced between a pat-
tern » and an image 4 .

12. Example 3

Fig. 3 shows the 4 classical nucleotides: adenine, cytosine, guanine, uracile, and in the middle
- AZT, for which graph of the formula is on a minimum total distance from them.

12. Conclusion

In this paper, we presented a novel and efficient algorithm for solving direct and inverse prob-
lems that exist in chemical preparations with antivirial effects. As to the best of our knowledge, the
proposed algorithm reported in this paper is the fastest algorithm published in the literature. We illus-
trated the algorithm with some examples demonstrating that the algorithm is very effective for pattern
recognition problems with given geometric and numerical characteristics. This project is still at its in-
fancy. We plan to report more details about this algorithm and applications that could be impacted as a
result.

Fig. 4. AZT (on middle) has a minimum total distance from the nucleotides A, C, G and U
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Cmamobs nocmynuia 6 pedaxyuro 10.02.2010 2.

T'pumcax-I'pénep B.B., [ pumcax-I pénep FO., [lempoy M.
CynepaaropuTm pacnosHaBaHusi 00pa3os

[MpencraBneH HOBBIN U AQ)EKTUBHBINH ANTOPUTM JUIS PELICHUS IPSIMBIX U 00paTHBIX 33124, KOTOPbIE BOZHUKAIOT
B XMMHYECKHX IPOIEccax C aHTUBUPYCHBIMH 3¢ dexTamu. Hackobko HaM M3BECTHO M3 JIMTEpaTyphl, Ipeiara-
€MBIi alrOPUTM SBJISIETCS CaMbIM OBICTPBIM aJITOPUTMOM. AJITOPUTM TpeOyeT, 4ToObl UCXOAHas MH(pOpPMAIHs
OblIa mpejcTaBiieHa B (opMe AMarpaMMbl. BONBIIMHCTBO JPyrux OMyOJMKOBAaHHBIX aJTOPUTMOB HE MPEAbSB-
JSIFOT 3TOTO TpeOOBaHMSA. AJITOPUTM OCHOBAaH Ha IOCTPOCHWH TONOC-KIaccHpukaTopa. TOT aNroput™M O4YEHb
3¢ eKTUBEH IS 33/1a4 PACIO3HaBaHUSA 00pa30B ¢ TEOMETPHUUCCKUMH M YHCIOBBIMH JaHHBIMHU. D()(HEKTHBHOCTD
ITOPUTMa IPOWJITIOCTPUPOBAHA PELICHUEM 33Ja4H MOCTPOCHHS XUMHUIECKOW CTPYKTYPBI MOJICKYIBI, KOTOpas
ncnosp3yercs B peakuuax aHTu-CIIA/I.

Kniouesvie cnosa: AJITOPUTM, paCliIO3HABAHUC I/1306pa)KGHI/II\/'I, Auarpamma, Tomoc.
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