Physics of consciousness and life, cosmology and astrophysics

SYNERGETICS AND THEORY OF CHAOS

YK 167.7, 517
Gritsak-Groener* V.V., Gritsak-Groener** J.

STRATEGICALLY CONTROL OF CHAOS AND INVERSE PROBLEMS.
PART 2

* HRIT Laboratory, International EBS Laboratory, Germany, Austria, Switzerland
** University of Georgia, Georgia, USA
e-mail: v_hrit1000000@yahoo.com

We introduced the notions control of chaotics, i.e. control the finite chaos structure.
Further we introduce the notion control strategy. In section 2 review some of the standard facts
on control for chaotics. In section 3 have complied some basic facts of chaos flows control
with penalty function. Section 4 is devoted to the study of control strategy against external
controller and antiterrorist control strategy. Let us the groundset AcZxZ. to the case under
discussion in section 5. In section 6 we gave the direct algorithm of single-center infection on
ZxZ with the ramified boundary of the ground-set AcZxZ. Finally in section 7 we gave
inverse algorithm for computational disaster advances(DA)of single-center infection on ZxZ
with the ramified boundary of the ground-set AcZxZ. Also we designed and developed a set
of algorithms for construction of the arbitrary and concrete chaotic set that can efficiently be
used in evaluations of the propagations autooscillatory geotectonic waves.
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Nichts war noch vollendet, eh ich es erschaut,
ein jedes Werden stand still.

Meine Blicke sind reif, und wie eine Braut
kommt jedem das Ding, das er will.

Nichts ist mir zu klein und ich lieb es trotzdem
und mal es auf Goldgrund und groB3,
und halte es hoch, und ich weifl nicht wem
16st es die Seele los...
Rilke

1. Introduction

Let the set B be the disaster advances. We will consider the general direct algorithm for viral
extension and other disaster advances (DA) is given by the closer of the set B < A for the chaotic a

chaotic H = (A, Q), Q < 2*. Let t is an iteration number of DA. Hence B is the disaster zone. The DA
takes the extension B to ~a(B)

BcCic...c(Cc...cC=~=(B)cCA, (1)
where C; is the part closer of B. Cycles yx are elements of Q. Let %, be given by Cuq 2 ¢ & Ci1- Then
X« is interpret of the disaster source. The inverse algorithm for computational disaster advances (IDA)
is given by coordinates of infection sources {)}, t = [1, n], n = w(Q2).

Let us the groundset A ¢ ZxZ. to the case under discussion in section 5. In section 6 we gave
the direct algorithm of single-center infection on ZxZ with the ramified boundary of the ground-set A

c ZxZ.
Finally in section 7 we gave inverse algorithm for computational disaster advances(DA)of sin-

gle-center infection on ZxZ with the ramified boundary of the ground-set A < ZxZ.
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2. Glossary

1.1. For convenience of the reader we repeat the relevant material from [5].
Let A, B be the sets. A #: A =—d=—p B is the multimap(mm) #: A — 2°.

The pair & = (¥, A) is called a control graph & of mm #. The elements of the set A are a

nodes of &. The pairs u = (ot , ) are called an arrows of &, where the o is a tail of u and #Hay) is a

def
spike of u. N(n) = {keN: k<n }. R = (A, : ieN(n)) is called an indexed family. An indexed family

R is called a personal family if A; # A; when i # j. By definition put 47 = A\ 4 . A family sets S°= {
A’ :ieN(n)} is called a complement of the S = { 4, : ieN(n)}.

Suppose
H= (A : C;, ieN(n)) )
is an personal family such that
1) WC) =D,

2) ifCicCj=>Ci=C;wheni#j.
We call &# a chaotic (chaos) on the set A. A chaotic Z on the set A is the chaotic of circuits of a
matroid

M = (A, C={Z}: C;, ieN(n)) 3)
on the set A if D¢ € and € satisfies the eimination axiom :

(ax) whenever Z' # 7€ and Adae Z' N Z?, there is a Z'e € with Z°'c Z' U Z2\{o}.

=

A binary relation > on A is called a prefer- | EFSFsE==5

enceif > reflexive, transitive, and complete. Let > be
a strongly binary relation on A. Then an acute hull

>> of g) there exists a sequence o = 0y, . . ., 0= P
such that oy > 041 (ieN(n-1)). For every fixed a*e A
let 3=, o*) = {a€ A : a*> o}. Similarly, 3>, o*)
={oe A o*> a}.

Let U is a finite set. A digraph D is a pair is
a pair D= (U, >). A ditree T~ is a digraph (U , >)

such that there exist an element 0.°e U (to be called a
root of the digraph) having the following properties:

a. o>>o° (ael),
b. 3 ,a°) =0,
c. uSE,)=1(@=#aoc°).

Fig. 1. Dmytry Pollack. Disaster Zone.

The elements of the set U are a vertex of T>. The pairs u = (o, B) are called an arrows of T~ if 3(> ,
o) =f.

ZXZ is called square lattice over Z, where Z a ring of integer numbers. The ground-set A <
ZxZ. Now consider a graph T = (V, E), where the vertex-set V = A and edge-set E = {eeB, e
e{V(i,j)eV: (i-1,j), (i,j-1), (it1,j), (i,j+1)}}. Before consider the inverse function on a graph I', which
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can be written in the form

RO =Y [] 6™ (4)

n (i,j)eE
where mm;is either 1 or -1, 0 = e', here I is a number of iterations.

Let W be the infection’s network on square lattice Q* with ground-set A ¢ ZxZ. Suppose that
there is a supply of disarder fluid (df) at the origin and that each edge of Q*allows fluid to pass along
it with probability p, independently for each edge. Let Pi(p) is the probability that vf spreads to at least
i vertices. Thus

PV = limP(p)
is called a critical probability of W.

Proposition 1. [See 5]. The critical probability that vf spreads to at least vertices on the square
lattice W is between 0.51 and 0.68.

We shall say that the chaotic (2) is a controlled chaos &#, where [i]e N(n) is a controller, the

index family (C;, ie N(n)) are a territory of the controller [i], and Z = {[1], . . ., [n]} is a control-
brigade (or brigade). The elements of set A are a position of control for the chaotic
H = (A : C;, ieN(n)),

A is a position-set. Suppose the pair (Z' , Z?) is partition Z when Z' are an active controllers, and Z*
are an passive controllers.

We shall say that for the chaotic H there exists a control if the following conditions hold:
(a) we have a multimap
QA =bepA, (5)
then this is called a law of the control;

(b) for any [i] there exists a preferences ¥, then this ¥; is called a preference of controller [i].
def
Let Cp = (o : Q(o) = D) and using a transformation of Q we get Q(Cy) N Cy = &, where ke

N(n).
Suppose 0ye A be a beginning element of position. We shall say that a brigade Z = {[1], . . .,
[n]} experts control over the chaotic H if the following steps hold:
1) let ([i], .- o ljly «-o[l]) 2 D (1L £ ... Sj...L1€0) is maximum allowable of controller number
such that Q(oy) N C, # G, where te(i, ..., j, ..., ) whence the controller [t] choose element of

position o€ Q(0y), control is continue and we have the controllable positions 0, (xi, cen (xlj ,

.
ey O

2) if ([i], -.-s[j]s ---»[1]) = D the control is finished;

3) let te (i, ceey j, ceey l), if ([i]], ceey [ir(i)]9 "'9[j1]9 ceey [jr(j)]s ...,[11], ...,[lr(])]) # @ is maximum al-
lowable of controller number such that Q( o) N C, # D, where t;€ (i1, «+v drgi)y «eesfts ooes Jr(

«essl1y «.05liqy) whence the controller [t] choose element of position o € Q( o ),control is con-
tinue and we have the controllable positions
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ai;l_-“.:mu‘. {Ii?l:-'-: C.:"'_J_ru a:ijl:-'-: @

(6)

4) lf([ill, ceey [ir(i)]a ...,[j]], ceey [jr(j)]a ...,[l]], ---s[lr(l)]) = (J the control is flnlShed,

5) and so on, as so long the controller induce the nonempty positions in the ditree T> = (U , >)
(6).
A depth of contral is called a lenght of maximal depath in T>.

A preference %i of controller [i] it is possibility represent such that a numerical bounded
function fi(X)I X — R as follows: a *>i B < fi(or) = fi(B). Then we shall say that a brigade Z = {[1],
..., [n]} experts control with penalty function fi(x) over the chaotic H. If a controller [i] is the ac-

tive, it is customary were more preferable to position of control with respect to ¥i, ;" (Ci) = sup fi(x)

xeC;

will be written in terminology of penalty function. If a controller [i] is the passive, it is not customary

were less preferable to position of control with respect to *i, f,” (C;) = ian fi(x) will be written in ter-

minology of penalty function.

3. Chaos Flow Control with Penalty Function
3.1. Consider a finite digraph
['=(V(D),EI), V', v, 9), (7
where E(T) is the arc-set, V(I') is the vertex-set containing a source v'e V(I') and hole v € V(I'), and
¢ : E(I) —— R"is the function defining the capacity of arcs.
We can digraph I' (7) in form a chaotics & = (A : C;, ieN(n)), where A = V(I'), C; = E(I'),

and @ : E(I) — R is a penalty function, [i]eN(n) is the controllers. Preference *i give the penalty

functions. All controllers is active. The law of control be determined next graphical constructions.
Let

P={PcV():v'eP,ve P
For Pe @, we refer to
R(P)={ecE(I'): 0'ec P,Jee P}
as the cut corresponding to P and define its value of a penalty function by

o(P) = Z o(e,), eeR(P), r=|R(P)|.
AflowinI'isa functior;:1
©:EIN—>R"
that satisfies capacity condition:
0 <0O(e) < @(e)
for each ee E(I') and the conservation condition:

Od'v) =0(5v)
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at each vertex ve V(I') distinct from " and e’, where

O@G'v)= ) O(e) and OE V)= > O(e).

Veedty

Veed v

A chaos flow control of digraph I' with the penalty function ¢ : E(’) — R is maximization the

value of flow ©.

Fig.2. Anatoly Fomenko. From the
flows.

Proposition 2. [See 5]. The chaos flow control of
digraph T with the penalty function @ : E(’) — R is
equal to the minimum capacity of a cut.

Corollary 2.1. Efficient algorithms of complexity

such as O( |V(F)| %) are known for finding a maximum
flow.

The proof and the algorithm are found in [1].

3.2. The basic definitions of the terms pertaining to
flows control in general chaotic are as follows.

Let 3 =(A,C) be finite chaotic with the groundset
A = {ag,ay, . . ., a,} and the cycles C = {C,Cy, . . .,Cq}C
22 a,e A and is called the flows with input in a, of 3.

Given C(ag) < C, C(ag) = {04eC : Va; 3 a0}, j = [Lr].
And given

V={vweQ": k=[1,m]},

where vy is called weight of the element aye A.

There is a standard a chaotic flow control problem. Really, the chaotic 3 =(A,C) is the con-

trolled chaos. A is the position-set, [i]Je N(d) is the controllers, C; is the territory of the controller [i],

and Z = {[1], . . ., [d]} is the control-brigade. The law of control and penalty functions be determined

next chaotic constructions.

Further, given the matrix M = [Tij]n., Where T;; = 1 if a;€ 0. Since a;¢ o, we have T;; = 0. The

matrix M is called flow-matrix across the cycles C(ay). Finally, define the flows Tg of 3 by

(plasz . '9pr)9 Pi€ Q +a

where

Zr,jpj <v,,i=[Ld].
=

V= 2 p,; is called value of flows Fs. (The penalty function!)
Jj=1

Examples. A blood flow, a limphe flow, a toxic flux, geotectonic flow, a peniciline
propagation and other are examples for flow in chaos.

Finally we assume that
(XIO 9 xr )
is the solution of the problem

28
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P3) = ixj — max

Y t,x, <v,,i=[Ld].
Jj=1

The vector (xl0 5 oens xf ) is a maximum 3-flow in the presence of weights V = {vic Q" : i=[1,d]} and

flows with input in age A. If ¢ is cycle of 3 which contains
a, then by the capacity f(ci) of ¢x (With respect to ag) we
mean

f(cw) = Z V.

(ilajeck)

We say that the chaotic 3 =(A,C) is called a regu-
lar if for each aye A which is not a loop of 3 and for any
set of capacities V={vy, ...,vq} the value of the maximum
S-flow equals the minimum capacity f""(c,) of ay, i.c.

P™(S) = ""(cy).
The figure 2 is the illustration of the chaotic-flow.
Next, we are now in a position to state the problem
of chaotic theory.

Problem JULIA. Let S =(A,C) is a finite chaotic.

Fig. 3. Ivan Nevidomyj. The Penetra-
tion.

Where S is a regular chaotic?

Theorem 3. Let 3 =(A, C) is a finite chaotic. a,€ A

is not a loop and for any set of capacities V={vy, ...,va} (VVv; 20) is the value of the maximum 3-flow
equivalent the minimum capacity ™" (cy) of ay, i.e.

P™(3) < £™(cy).
The proof and the algorithm are found in [2].

4. Control Strategy against External Controller

4.1. A field operator of the field Sc Aisamap @ : S—— A. Let
QA =—=b=p A
is a law of the control for the chaotic H = (A : C;, ie N(n)). A strategy of a controller [i] is the field
operator
Vi : G\ Cp— Q(Ci\ Cy), )}
where Cy = (0. : Q(o) = &) and Q(Cy) N C; = . The controller [i] will be considered to have a fixed

the strategy Y. Let a row string is
def
‘P = (\Vla ‘I’Za ceey Wn)
such that ; are the strategy (9). The multi map

¥ A\ Cy—a—P A (10)
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is defined by requiring ¥ to be the field operator y; on C; \ C,,
i.e. Y(o) = wi(o)), where ae C;\ Cy .

Further let R = (iy, i3, ..., i) are the index of an active
controllers, P = N(m)\R = (ji, j2y «+-» jnr) are the index of an pas-
sive controllers for control-brigade

Z={1]..... ]
7= {[illa LRI [ir]: [jll ERRT) [jn-r]} = {ZRa ZP} A multi map

¥ (10) is called a strategy of a control-brigade Z.

Theorem 4. A strategy ¥ is defined uniquely of the con-
trol for the chaotic H if C, be fixed.
Proof. The proof of the theorem 4 is similar.

4.2. Suppose a row string

¥} = v, .o, Wi}

is a set traversed the control position (see (6)), where k is a depth

of ditree T>. Further assume that a row string

Fig. 4. Salvatore Dali. The Pan-
= (e ) demis.

other a set traversed the control position. We call the strategy ¥ preferable for a controller [i] of the
strategy ¥’ if for Voie C; W(ar) occur W' (o) (P(c) i ¥'(r)) and is denoted by

(P! s {¥). (11)

Theorem 5. The relation ;i (11) is a preference in a set of strategy of the control for the chaot-
ic H.

The proof is straightforward.

The relation i (11) is called a strategy preference.

4.3. A strategy preference i of controller [i] be written in terminology of penalty function f :

{{¥}} — R, where {{¥}} is the set all strategy (10).

£ (¥) = sup (fi(x) : x{'¥}) if []e Zg, (12)

S (P) =inf (fi(x) : x{¥}) if [i]e Zp. (13)
In terminology of penalty function the strategy preferance (11) is rephrased

f(¥) > (). (14)

4.4. Let y;is an arbitrary strategy of a controller [i] and ¥neyi is a control strategy ¥ without

strategy of the controller [i]. A strategy ¥* = {y,, ..., V,} is called control strategy against
external controller [i] if

P* s (Wi, PFNapi)s (15)

where [i]le Z.
By (15) is meant the controller [i] there is nothing to prevent of every remaining controllers.

Further a strategy W* is called a safety control strategy if the strategy preference (15) be real-

ized for all controller [i]e Z.
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Finally a strategy W* is called a antiterrorist control strategy if the strategy preference (15)

be realized for all exterior controller V[n+1]e Z, see figure 3.
The algorithms of construction safety&antiterrorist control strategy for chaotic will be object
of next paper.

5. Direct Algorithm of Passive Control on ZxZ (Algorithm 2)
In sections 4-6 will be concerned of a problems control with one passive controller [1]", posi-

tion-set of control A ¢ ZXZ, controlled chaotic H = (A, Q ), Q < 2*. This problem is well-know was
named for the monitoring infecting zone [1] - [3].

Let the subset B < A is a beginning infected zone with a boundary L and L is a cycle curve

without an intersection. L is called a boundary zone B. 3 = (A, Q, B) is a beginning infect front.
Further, we may applicable the algorithm 1.

Suppose S(A) 2 A is a minimal sphere with the center O, = (iy,jo)€ B,

mT: A— {+1, -1}, (16)
be the function that takes each two cells k = (iy,jx) and m = (ip,jm) to

1) ok, m)=+1, if | im —io | > ik — o] O | jm = jo | > | jic = jo:

2) 7(k , m) =—1 on the other case.
S(A) is called a restriction sphere.
By definition the map (16) is a strategy of a controller [1].
Correctly are the following theorem.

Theorem 6. [See 5]. Let a finite ground-set A < ZXZ is a restriction sphere S(A) is a finite

ground-set A and I" = (V, E) is a finite graph, where the vertex-set V = A and edge-set E = {ee B: e
e{V(j)eV: (i-1,)), (i,j-1), (it+1.j), (i,j+1)}}, N() is the inverse function for the algorithm 1 on a

graph I'. Then we have

N(F) = ZGH(ED—H(EE) , (17)
where E; to be the set of edges (d , r) of I' such that wym, =1 and E, be the remaining edges of T,
here mqm, =1 if the diedge (d , r) is “ie—j”, 8 = €', here I is a number of the Algorithm 1 iterations and

T is strategy of controller (16).

Corollary 6.1. [See 9]. Suppose N’ is an iteration number of algorithm 1 on graph I; then N°
< pE@D)).

Corollary 6.2. The algorithm 1 on ZXZ has big computability complexity.

6. Direct Algorithm of single-center infection on ZxZ (Algorithm 3)

Suppose conditions of theorem 6 being satisfied. The subset B < A is a beginning infected
zone with the boundary zone L. Let L ¢ B and the subset A ¢ A/B ¢ ZXZ are infection-screened

cells. Infection screened cells are marked the symbol “#”, see fig.5. The boundary zone B contains an
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infection centre O, e B. Any cell ce B is called active if {c¢} N L # & and the active cells are starting
points of algorithm 3. The cells

¢;={ix0:1,j+0:;1)=(ijleA
are called neighbouring cells of cell (i,j)e A. Any cell ce A/(B U AY) is called a freedom cell (f-cell).

For any cells ¢; = (i,j), ¢2= (k,I)€ A there exists a distance
d(ci &)= (i k)" +(j=1)" .

Algorithm 3
(RI) We get L; = L.

(Z) An active cell me L is said to be initial if d(m, O,) — min. Let C,, =

{m;, m,, mz} be the f-cells, where p(m; N m) =2, and m* be the cell of C,, such that m* have
the maximal number n(m¥*) of neighbouring active cells. m* stand of the active cell. L; := L;/{m}
w{m*}. If m* not exist, then Li:=L;.

The rule (Z) by repeats p(L) — 1 time in the hour-hand direction.

If Ly # L, then L = L;, we add to A" the new f-cell and go to (RI). Finally, if L; = L, then the
algorithm 3 is stop.

viv v v v v
v v v
v i v
v X v
v
I—/*/A v v
v - « |
v B > v
v « |B |- « W, v
i, v
v v v v |v v
v v v v
v v v v
v vi v v

Fig. 5.
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Example. In Fig.5 the new active cells are marked the sign “J”, the active cells are marked

the sign “Xx”, and the f-cells are shown as “#”".

Theorem 7. [See 9]. The algorithm 3 has the compu-
tation complexity O(m?), where m = p(L).

Corollary 7.1. The algorithm 3 is effective to solu-
tion of real problems for computational viral extension.

Corollary 7.2. Let B = O, = L; then P=—¢~0.57,
n
S
where n, is the number of the new active cells and ny is the
number of the f-cells. Using the algorithm 3 computa-tional
experiments we obtain n, and ny.

Hypothesis. The number P is a critical probability,

see (4), of single-center infection on ZxZ.

7. Inverse Algorithm of Single-Center Infection

Suppose conditions of section 6 being satisfied. Let
we have B = O4 = L of an initial infection. Furthermore, B*

Fig. 6. S. Grosz. The Passive Conduc-
tor

CA is an infected zone before starting inverse algorithm.

Let H c A / B¥* is fixed subset of f-cells.

Theorem 8. Let A € ZxZ is finite the ground-set, S(A) is a a restriction sphere, and 7 is func-

tion (16). Further, let I" = (V, E) is a finite graph, where the vertex-set V = A and edge-set E = {eeB:
e e{V(i,j)eV: (i-1,j), (i,j-1), (i+1,j), (i,j+1)}}, N(I) is the inverse function for the Algorithm 3 on a

graph I'. Then we have
N(T) = (6 +6™") X N(T'o<{e}) — 0" x N(T+{e}), (18)

where I'<{e} be the graph obtained by deleting an edge e from I, I'+-{e} be the graph obtained by de-

leting an edge e and then identifying its end points, © = ', here I is a number of the Algorithm 3 itera-
tions.

Theorem 9.

I* < (WA) —p(H)),
where I* is a number of the Algorithm 4 iterations. A is a groundset and H is the subset of all protect-
ed cells.
Our main result is the following.

Theorem 10. There exist the algorithm 4 of effective solution of the inverse problems for
computational viral extension.
The proof theorems 4-6 are in [7]-[12] and the algorithm 4 listing is in [9].

Corollary 10.1. Using Algorithm 4, we get the coordinates:
OA = (i0 5 jﬂ)a (19)
where O, is an infection center.

Remark. The coordinates (19) are a dream of antiterrorist organizations.
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Cmamvws nocmynuia 6 pedaxyuio 08.04.2012 .

I'pumcax-I pénep B. B., I pumcaxk-I pénep FO.
CrpaTernyeckoe ynpasJjieHHe Xa0coM M o0paTHbIe 3aga4uu. YacTsb 2

MBI Ipof0KaeM BBOJUTH HOBBIE TIOHATHSI KOHTPOJIA U yNIpaBlIeHHsI XaocoM. MBI BBOAMM TaKKe MOHSTHE CTpa-
TErUH YIPaBJICHNS! Xa0TUYECKHUMHU CTPYKTYpaMu. B paszaerne 2 naH kparkuii 0030p cTaHAApPTHBIX (AKTOB O KOH-
TpoJie XaoTuKoB. B paznene 3 npuBeneHsl HeKOTOpbIE Oa3ucHbBIE (aKThl O KOHTpOJE (YIPaBICHUH) XaOTHYHBIX
HOTOKOB co ITpadHoil GpyHKuueil. B pa3aene 4 Mbl CHOBa BBOAMM HOBBIE MOHSTHUSI CTPATEIUU KOHTPOJISI, KOTO-
PpbI€ MO3BOJISAIOT IIOJIHOCTBIO KOHTPOJIMPOBATh Xa0C Ja)Xe B CUTYaIUsX, KOT/Ia OMH U3 KOHTPOJIEPOB U3 OpHUraibl
KOHTPOJIEPOB TPEIaTEIbCKN HAUMHAET MEHSTh CBOIO CTPATErHIo MK, 00Jiee TOro, NOSBIISETCS OAWH U3 BHEIITHUX
KOHTPOJIEPOB cO cBOel cTparerueil. B o6oux cimyyasx, Hallla cTpaTeryus He MO3BONISET MPEAaTeNo UiIN TePPOPH-
CTy (TaK, eCTECTBEHHO HA3bIBATh ITHX KOHTPOJIEPOB) MOIYYUTh KaKyr-HUOYAb Bbiroay. [Janee, B paszaene 5, Mbl
paccMaTpuBaeM KOHKPETHBIN ciyyaill KOHTpOJIS, KOTJa MHOXKECTBO KOHTPOJIS MMeeT KOOPAUHATHYIO LEJI04HC-
JICHHYIO CeTKY ACZXZ W y Hac OIWH MACCHBHBIN KOHTponép. Takas 3amada KOHTPOJIS Xaoca, HECMOTPS Ha
OTpaHUYEHUs, JOBOJIBHO paclpocTpaHeHa. B apyroif TepMUHOJIOIMH OHa Ha3bIBaeTCs 3a7a4yeil MOHUTOPHHIA Ha
KOOpAMHATHOM ceTke. Hampumep, k TakuM 3aadyaM OTHOCHUTCS MOHUTOPHHI PaclpOCTpaHEHUs BUPYCHOM 3IH-
JIEMUH WM PacIpOCTPaHEHHs MOCIEACTBUI CTUXUITHOTO O€/ICTBHS MM TEXHOTeHHON Katactpodsbl. B paznenax
5—7 MBI €€ NMOJIHOCTBIO AITOPUTMHUYECKU peutaeM. B pasnerne 5 Mbl IpUBOAUM IPAMOM aJIrOpUTM €€ pereHus. B
paszaene 6 MPUBOAUTCS AITOPUTM pelIeHHs B clIydae U3BECTHOTO IIEHTpa pacnpocTpaHeHus xaoca. (Hanpumep,
JUISL pacIIpOCTPAaHEHUsT HYKJINAOB 13 YepHOOBUILCKOW aTOMHOM 3JIeKTpocTaHuK). B 0boux ciydasx npemycmar-
puBaeTcsa cTpaTerus NpOoTUU BMeIIATEeNbCTBA IperaTeneid u TeppopuctoB. Hakoner B pasjene 7 MPUBOAUTCS
ITOPUTM pelleHns1 00paTHOM 3aJayll MOHMTOPHHIA, NPHUHAUIeKAIIN nepBoMy aBTopy. [pyruMu cioBamu,
BBIYUCIIAIOTCS] KOOPAMHATHI IIEHTPA PACIpOCTPaHEHHUS Xaoca.
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